

2003 SUZUKI ENVIRONMENTAL REPORT

Introduction

As a general manufacturer of automobiles, motorcycles, marine and power products, we take great pride in the roles our wide scope of products play in providing benefits to so many people in their daily lives. As society places even greater significance on environmental concerns, we, the Suzuki Group, feel that it is our responsibility to move vigorously forward with environmental conservation. Keeping this in mind, energy reduction, low exhaust emissions, recycling, and other issues that deal with conserving our environment are of great concern when developing our future products.

One example of such effort can be seen in the marketing of the first hybrid mini-car, the "Twin Hybrid". In addition to answering the demand for compact 2-passenger vehicles, its Suzuki Hybrid System provides customers with a more eco-friendly alternative in transportation. Other efforts can be found in advancements in the development of fuel cell vehicles.

Also on the subject of the environment, we are reevaluating and revising our environmental conservation activities based on the Suzuki Global Environment Charter, which was first introduced in our 2001 Suzuki Environmental Report.

At Suzuki, we actively pursue environmental activities both domestically and abroad because we believe that environmental conservation activities are an integral part of doing business. We do this in addition to offering the consumer products that place less impact on the environment.

Osamu Suzuki

CEO

Hiroshi Tsuda

COO/ Environmental Committee Chairman

Contents

Environmental Management 2

Mission Statement	2
Suzuki Global Environment Charter	3
Environmental Organization	4
Suzuki's Environmental Conservation Activity Plan	5
Environmental Accounting System	5
Obtaining ISO14001 Certification	6
Environmental Inspection	6
Environmental Education	7
LCA (Life Cycle Assessment)	8
Results of Environmental Performance in Fiscal 2002	9

Reducing Pressure on the Environment 10

Design/Development	12
Automobiles	13
Motorcycles	24
Special Products	26
Manufacturing and Purchasing	29
Distribution	33
Distribution Within Plants	33
Product Distribution	33
Distribution of Parts, Accessories	34
Recycling	34
Sales and Service	35
Management, General	38

Environmental Data......42

	Vehicles that Meet Law on Promoting Green Purchasing 42
	The Number of Low Pollution Vehicles Shinned 43
	A List of Low Exhaust Emission
	Vehicles that were Delivered to the Market 43
	Environmental Data for New Products44
	Plant Site Environmental Data47
ì	ossary55
	History of Suzuki's
	ompany Overview

ſ

The large wind turbine generator shown on the front page was erected in March of 2003 at the Suzuki Training Center located in Inasa-cho, Shizuoka prefecture. Standing 21 meters high at the hub, its 15-meter diameter blades are capable of producing a maximum 40kW of electric power. The system operates quietly and can produce power with as little as 2m of wind speed. We undertook this project because in addition to reducing our reliance on energy, we believe that the utilization of renewable natural energy resources, etc., will play an important role in the future.

This report is an English translation of the original Japanese text of Suzuki's Environmental Report. It contains information regarding Suzuki's environmental conservation activities carried out in fiscal 2002 (April 2002 to March 2003). Unless otherwise mentioned, the text mainly refers to Suzuki's domestic environmental conservation activities. (Unless the related company or dealer, etc. is mentioned, the text refers to the Suzuki Motor Corporation only.)

Also, the activities prior to fiscal 2001 and fiscal 2003 that are mentioned in this report have been included because they relate to applicable subjects in the report. The next environmental report will be published in the summer of 2004.

Environmental Management

In addition to fundamental business ethics, we strive to maintain harmony between the environment, economy, and society when managing our business. The goals of our activities are reflected in our mission statement, and as Suzuki employees, regardless of rank, we are conscious of our duties and responsibilities while we go about our daily work.

Mission Statement

1. Develop products of superior value by focusing on the customer

- 2. Establish a refreshing and innovative company through teamwork
- 3. Strive for individual excellence through continuous improvement

Suzuki Global Environment Charter

The Suzuki Global Environment Charter was established in March 2002 as our standard concept for environmental activities. Our environmental activities systematically advance under the concepts laid out in this charter.

Environmental Concepts

In order to pass on to the next generation a clean environment and bountiful society, we must all realize that the actions of each and every one of us have a great effect on our earth's future, therefore we must make every effort to preserve our environment.

Environmental Policy Standards

As greater priority is being given to global environmental conservation within our management, we have determined that the following environmental policies aimed at a sustainable society, have the greatest potential for allowing our society to develop further and to advance environmental conservation in regard to our business activities and our products.

- 1 Maintain and improve upon our environmental management system.
- 2 Strictly observe environmental laws and follow our own standards.
- 3 Reduce the pressure placed on the environment resulting from business activities and products.
- 4 Promote environmental communication.

Environmental Action Guidelines

Understanding that all business related activities as well as the products we produce have an impact on our local community and on the global environment, we put forth the following action guidelines that place an emphasis on the environment.

Environmentally Friendly Business Management

- Continuously improve upon our environmental management system.
- 2 Promote environmental organization activities.
- 3 Maintain an emergency system.

Develop Environmentally Friendly Products

- 1 Improve fuel economy.
- 2 Reduce exhaust emissions.
- **3** Develop automobiles that use clean energy.
- 4 Promote the three Rs (Reduction, Re-Use, and Recycle).5 Manage/reduce those materials that place a burden on the
- environment.
- 6 Reduce noise.
- **7** Develop intelligent transportation systems (ITS).

Environmentally Friendly Manufacturing

- 1 Consider the environment at all of our corporate sites.
- 2 Prevent pollution.
- 3 Promote energy reduction and the use of alternative energy.
- 4 Manage/reduce those materials that put stress on the environment.
- 5 Promote the three Rs (Reduce, Reuse, and Recycle).
- 6 Promote "Green" procurement.

Environmental Action Plans

Environmentally Friendly Distribution

- Use efficient transportation and logistics, and reduce energy consumption.
- 2 Promote the three Rs (Reduce, Reuse, and Recycle).
- 3 Promote the use of low emission transport.

Environmentally Friendly Marketing

- Promote environmental management among our distributors.
- 2 Promote suitable management of used products.
- 3 Promote the three Rs (Reduction, Re-Use, and Recycle).

Environmentally Friendly Offices

- 1 Promote energy reduction.
- 2 Promote purchase and use of "Green" products.
- 3 Promote the three Rs (Reduction, Re-Use, and Recycle).

Environmental Education and Information Disclosure

- Provide our employees with environmental education to increase their awareness.
- **2** Promote social contribution activities.
- 3 Disseminate information regarding the environment.

The "Suzuki's Environmental Conservation Activity Plan" clearly defines goals to be achieved in the future. Progress on the attainment of these goals and reassessment of these plans will be carried out on a regular basis.

Environmental Organization

The structure of our Environmental Organization is simple so as to provide speedy communication and application of environmental measurements, etc.

Suzuki's Environmental Conservation Activity Plan

Suzuki's environmental conservation activity plan lays down concrete mid- and long-term environmental goals and promotes cooperation among our group-affiliated companies in realizing these goals.

The "Suzuki Environmental Conservation Activity Plan" was first established in 1993 and later, revised in 1996. The next phase calls for standardization and systemizing of the items in the Suzuki Global Environment charter after which we will again reevaluate and revise around 2010.

100 1 × 1.1	*****
88848985792	RUBERSEATES

Environmental Accounting System

Environmental accounting plays an important role in calculating the balance between the cost and effectiveness of our environmental conservation activities. Although it is difficult to judge activities being carried out in some categories at this point, we perform environmental accounting in order to achieve optimum results in cost vs. effectiveness. In preparing our own environmental accounting, we referred to the "Environmental Accounting Guidelines" report (Year 2002 Report) by the Japanese Ministry of the Environment.

(Unit: ¥100 000 000)

< Cost of Environmental Conservation > (Unit: Fiscal Year)

Classification	Fiscal 2000	Fiscal 2001	Fiscal 2002
Cost Within the Corporation	23.4	22.6	22.8
(Breakdown) Pollution Prevention Environmental Conservation Recycling of Resources	(7.7) (8.3) (7.4)	(7.3) (8.0) (7.3)	(8.5) (6.8) (7.5)
Cost of the upstream and downstream	0.3	0.2	0.2
Cost of Managerial Activities	6.9	8.9	8.2
Cost of Research and Development	140.1	174.5	221.2
Cost of Social Activities	2.0	2.2	2.8
Cost of Environmental Damage	0.3	0.3	0.3
Total	173.0	208.6	255.5

< Effectiveness of Environmental Conservation > (Compared to the previous fiscal year.) (Unit: ¥100,000,000)

Item		Fiscal 2000	Fiscal 2001	Fiscal 2002
	Energy Cost Reduction	3.4	2.9	2.1
Economical	Waste Management Cost Reduction	0.2	0.2	0.04
Ellect	Resource Cost Reduction	6.1	7.9	0.7
	Total	10.0	11.0	2.9

(Note) . Since some figures were rounded off, they may not agree with the total.

These are in-house environmental figures.

· For more information regarding the effectiveness in the amount of materials, refer to those individual items described in this report.

Obtaining ISO14001 Certification

ISO14001 is an international standard certification for environmental management systems. Through certification, we can obtain tools that allow us to assess the effectiveness of the environmental management system, the results of which can be used to further our efforts in environmental conservation activities.

Domestic Plants

With the certification of our Takatsuka and Iwata Plants, we now have a total of six domestic certified facilities. We have taken leadership and provided support in the introduction of environmental management systems and acquiring ISO14001 certification within our related companies, four of which gained certification in 2001. Also, our environmental section carries out spot investigations to check environmental conservation activities and provides guidance in making improvements at the site.

< Domestic Plants >

Kosai Plant	July1998
Osuka Plant	September 1999
Sagara Plant	September 1999
Toyokawa Plant	December 2000
Takatsuka Plant	March 2003
Iwata Plant	March 2003

	Affi	liated	Com	panies	ŝ
•	~	lateu	COIII	panies	

Suzuki Toyama Auto Parts Mfg. Co., Ltd.	March 2001
Suzuki Hamamatsu Auto Parts Mfg. Co., Ltd.	June 2001
Suzuki Precision Industries Co., Ltd.	October 2001
Suzuki Akita Auto Parts Mfg. Co., Ltd.	March 2002

• Overseas Plants

All overseas factories, aside from those that have already gained certification, are working toward the goal of achieving ISO 14001 certification.

< Related Companies >

[Affiliated Companies]

Magyar Suzuki Corporation (Hungary)	April 1998
Maruti Udyog Ltd. (India)	December 1999
Suzuki Motor Espana, S.A. (Spain)	February 2000

[Related Companies]

CAMI Automotive Inc. (Canada)	June 2000
Nanjing Jincheng Suzuki Motorcycle Co., Ltd. (China)	February 2002

< Other Related Companies >

General Motors De Argentina S.A. (Argentina)	December 1999
General Motors Colmotores S.A. (Columbia)	December 2001

Environmental Inspection

Environmental management systems are inspected in the course of gaining ISO 14001 certification. In addition, we carry out our own inspections (in-house inspections and environmental patrols) to double check the confidence of environmental activities.

Environmental inspections are carried out so we can continuously improve upon our environmental management system. The results of these inspections are reported to factory managers, and used in improvements and regular reassessment of our environmental conservation activities.

Factory directors meetings are held once every two months with the meeting's location being rotated among our plants. Changes to environmental conservation activities that have been implemented at the plant, matters that relate to all plants, etc., are observed, discussed, and advanced to all plants.

< Inspection Calendar > < How in-house inspections lead to improvements > Feb Mar Apr May Jun Jul Sep Oct Nov Dec In-house inspection Jan Aug Environmental inspections carried out by A Request for improvements of nonconforming items independent inspectors. In-house Inspections Carry out and check up on corrective measures Environmenta Management System в Inspection Follow up inspection/confirm that conditions have improved С • Prevention Inspection ÷ D **Environmental Patrol** Final report to conclude inspection

A: Timed yearly to correspond with certification

C: Once a year Purpose: To create systems that prevent environmental accidents, and adherence to laws and regulations

D: Each factory/More than once a year

B: Once a year Purpose: To create an overall plant system that conforms to the environmental manual

Inspections Carried Out by Independent Inspectors (Overall Inspection)

Independent inspectors are contracted to examine documents and carry out on site examinations in regard to the validity and adequacy of our environmental management system, and determine whether measures are being carried out or not. No infringement of ISO 14001 environmental regulations was noted in the course of 2002 inspections.

In-house Inspections

We carry out two types of in-house inspections. When the inspection is carried out, we select inspectors that have no direct association with the section being inspected, and they examine whether environmental management is being properly carried out or not.

Environmental Management System Inspections (Overall Inspection)

The inspection of documents and on site checks are used to determine whether environmental management is being properly carried out or not.

Preventive Inspections (Limited Local Inspections)

The environmental management section makes thorough on-site observations and inspections in areas that possess a potential for accidents such as drainage disposal facilities, chemical use/storage, and waste disposal facilities.

Environmental Patrol (limited local inspections)

Areas that possess a potential for accidents undergo regular inspection.

Environmental Education

New employee education, education for functional sections within the company, and managerial education are carried out to promote a deeper awareness of our environmental conservation activities among our staff. We also hold emergency response drills in order to reduce the environmental impact of accidents and emergencies.

Training for Functional Sections

Environmental education was provided through training for functional sections and dealer employees. Functional sections took part in the following seminars: (Total number of participants: 203)

- Outlining the Fuel Cell
- Outlining the Environmental Management System (general system, factory system, vehicle system)

Seminars covering Freon disposal were also given at dealer employee training between October 2002 and February 2003. (Number of seminars: 55, Total number of participants: 1357)

Education According to Job Level

As a part of our employee education program, we have carried out environmental education programs for new employees, functional sections within the company, and in-house inspector programs for managerial positions. Also, our factories have carried out educational programs for employees whose jobs deal with processes that have an impact on the environment. A total of 511 programs were held — 493 programs for new employees, executives, etc., and 18 programs covering the overall factories.

Education to Obtain Special Qualifications

We encourage employees to obtain special qualifications relating to the environment. The number of those gaining such qualifications includes 222 managers for pollution prevention, 48 energy managers, 463 in-house inspectors, etc.

Overseas Trainees

Suzuki hosts a number of trainees from overseas. In their introductory education, they are provided with environmental education on subjects such as "Environmental Concepts in the Factory", "Separating Wastes for Disposal", "Dumping Liquid Wastes into Factory Drains is Prohibited", etc.

LCA (Life Cycle Assessment)

Environmental impact occurs not only during the course of product use, but also in the manufacture and disposal of the product. LCA (Life Cycle Assessment) is a tool that allows us to fully analyze and understand the impact that occurs in the life of the product—from manufacture to disposal. The utilization of LCA increases the effectiveness of environmental conservation because it can clearly define the priorities and effectiveness of environmental measures. From a technological point of view, this tool has not yet fully matured but advancements in this field are being made throughout the world. Suzuki takes an active part in developing LCA in our industrial sector.

Air and Water Discharge, and Landfill

Results of Environmental Performance in Fiscal 2002

The following is a compilation of environmental goals and results of fiscal 2002 (April 2002-March 2003) and goals set for fiscal 2003 (April 2003-March 2004). Future plans also call for the linking of long/mid term planing of Suzuki's environmental conservation activities with yearly goals.

Design/Development

< Automobiles >

Itomo	Fisca	1 2002	Figure 2002 Cools
nems	Goals	Results	FISCAI 2003 GOAIS
Fuel economy	Introduce vehicles to the market that meet the 2010 standards as planned.	Introduced vehicles to the market that meet the 2010 standards as planned.	Improve fuel economy as planned, and in addition to introducing vehi- cles that meet the 2010 standards, improve the average fuel economy.
Exhaust Gas	Introduce vehicles to the market that produce ultra-low exhaust emissions.	Introduced mini-vehicles to the mar- ket that produce ultra-low exhaust emissions.	Introduce compact vehicles to the market that produce ultra-low exhaust emissions.
Clean Energy Automobiles	Continue with the testing of hybrid vehicles on public roads, and further their development for commercial- ization.	Exhibited and promoted the sale of natural gas vehicles at low pollution vehicle fairs held in individual com- munities. Introduced "Twin Hybrid" to the mar- ket.	Develop affordable natural gas pow- ered vehicles and promote exten- sively.
Materials with Environmental Impact	Continue development of lead free wheel balancing weights.	Completed development of lead free wheel balancing weights.	Advancing industry-wide voluntary action plans (after 2006, reduce levels to 1/10 th of 1996 levels).

Manufacturing, Purchasing

Ito	mo.	Fisca	I 2002	Fiscal 2003 Goals	
items		Goals	Goals Results		
CO2 (Carbon Dioxide) *1 Amount of CO2 emissions per sales 22.74 tons-CO2/100,000,00 Waste Landfill Waste Less than 60 tons VOC (Volatile Organic Compounds) Amount of Emissions per Area 45g/m ² (47.7% reduction compared)		22.74 tons-CO ₂ /100,000,000 Yen (12% reduction compared to 1990)	21.88 tons-CO ₂ /100,000,000 Yen (15.3% reduction compared to 1990)	21.73 tons-CO ₂ /100,000,000 Yen (16% reduction compared to 1990)*2	
		Less than 60 tons	4.8 tons	0 ton	
		45g/m ² (47.7% reduction compared to 1995)	52g/m ² (39.5% reduction compared to 1995)	43g/m ² (50% reduction compared to 1995)	

*1 To match with other data we have revised the range that makes up the total. (6 Suzuki plants + 8 related companies → 6 Suzuki plants.)

*2 Long term goal for the amount of CO₂ emissions: Amount of CO₂ emissions per sales in 2010, 20% reduction compared to 1990.

Market

Itomo	Fisca	2002	- Fiscal 2003 Goals	
items	Goals	Results		
Recycling	Increase amount of used bumpers being collected.	Increased by 78%.	Increase amount of used bumpers being collected.	

Reducing Pressure on the Environment

We promote activities throughout our corporation to reduce environmental impact resulting from business activities or through the products sold in the marketplace.

Design/Development

Environmental concerns of products are far ranging and in some cases, quite complex. In response to many of those concerns, we have developed various technologies and/or designs that reduce the environmental impact produced by the product.

Automobiles Activities related to Suzuki's main product — automobiles — are introduced in this section.

Fuel Economy

Automobiles expel carbon dioxide (CO₂) in proportion to the amount of fuel that they burn. Through gradual increase in the number of automobiles that meet the 2010 fuel standards, we are reducing the amount of CO₂, reducing our reliance on resources, and contributing to the prevention of global warming.

Improving the Engine

- All Suzuki mini cars utilize our light and compact aluminum Ktype engine.
- The Hybrid Twin's engine is designed to reduce mechanical loss in moving parts thus improving fuel economy and driveability.
- Variable Valve Timing mechanisms (VVT) are used in nearly all of our mini cars.
- Low viscosity oil and VVT utilized in the M18A engine enables the Aerio to achieve high power output, quiet operation, and excellent fuel economy.
- Electronically controlled EGR (Exhaust Gas Return) provides the Escudo and Grand Escudo with excellent fuel economy, and reduces exhaust emissions by reducing pumping loss in the engine.

Cam Angle Sensor Intake Cam Shaft Crank Angle Sensor Crank Shaft Crank Shaft

Improving the Drive Mechanism

• Automatic Transmission (AT)

Our Escudo, Solio, Swift, Cruze, Aerio, Wagon R, Kei MR Wagon and Lapin vehicles all utilize a torque converter with a lockup slip control for improved power transfer efficiency in the transmission.

• EMCD (Electro Magnetic Control Device) Equipped 4WD Vehicles

Found in our 4WD Cruze vehicles, EMCD is an electronically controlled coupling system that delivers stability in a wide range of driving conditions while improving fuel economy. EMCD analyzes road conditions to deliver optimum torque from the transmission. Its electromagnetic clutch delivers excellent response even with its compact size and light weight. Some of our Kei models that incorporate this system have been introduced as EMCD equipped mini cars.

Lightweight Bodies

• Utilizing Tailored Blanks (Aerio, MR Wagon, Lapin) Tailored blanks is a production method where steel parts of different thickness or materials (high tension steel plate, plated steel plate, etc.) are welded in advance with laser welds, etc., or pressed together. The application of this method on parts like inner door panels or side sill inner panels enables partial reinforcement where it is needed, eliminates the need for additional reinforcement parts, and keeps weight under control.

• Utilizing High-Tension Steel Plate (All Suzuki Vehicles) Extensive use of high-tension steel plate enhances body strength while reducing the number of reinforcement parts and keeping weight under control. The use of this material is being expanded.

The Development of a New Urethane Seat Material

The development of a new urethane seat material led to a 5% reduction in weight compared to fiscal 2001.

Trends in Average Fuel Economy by Body Weight (Gasoline Vehicles)

Working to meet 2010 fuel economy standards, improvements in the average fuel economy of vehicles in most weight categories have been achieved.

Vehicles in the 875kg body weight category have achieved 2010 fuel economy standards.

Trends in Average Fuel Economy of Our Most Popular Vehicle

Fuel Economy Improvements in the Wagon R 2WD-AT

Trends in the Average Fuel Economy of Gasoline Vehicles by Weight

< Reference: Gasoline Vehicles • 2010 Fuel Economy Standards (10-15 Mode Fuel Economy) >

Weight Category (kg)	- 750	875	1,000	1,250	1,500	1,750	2,000	2,250	2,500 –
Body Weight (kg)	- 702	703 – 827	828 – 1,015	1,016 - 1,265	1,266 - 1,515	1,516 – 1,765	1,766 - 2,015	2,016 - 2,265	2,266 -
2010 Fuel Economy Standard (km/l)	21.2	18.8	17.9	16.0	13.0	10.5	8.9	7.8	6.4

A Sample of Applications: Seat backs and cushions in the Escudo, Wagon R, MR Wagon, Carry, Every, etc.

Trends in Average Fuel Economy by Body Weight (Gasoline Mini Trucks)

All gasoline mini truck models equipped with either manual or automatic transmissions have achieved 2010 fuel economy standards in all weight categories.

< Reference: Gasoline Mini Trucks • 2010 Fuel Economy Standards (10-15 Mode Fuel Economy) >

Weight Category (kg)		- 7	- 750 875		1,000 -		
Body Weight (kg)		- 7	/02	703 -	- 827	828 –	
Body Type		Туре А	Type B	Туре А	Туре В	-	
2010 Fuel Economy AT		18.9	16.2	16.5	15.5	14.9	Type A: Suzuki's Alto Van
Standard (km/l) MT		20.2	17.0	18.0	16.7	15.5	Type B: Suzuki's Carry and Every models.

Exhaust Emissions

The 2000 exhaust emission standards represent a 68% reduction in exhaust emissions compared to previous regulations enacted in 1978.

Nearly all of our vehicles have achieved reductions greater than those set by the 2000 standards. Vehicles with emission levels that are 75% lower than those set by the 2000 standard are awarded an "Ultra-Low Emissions" rating, those with levels that are 50% lower than the standards are awarded an "Excellent-Low Emissions" rating, and those with levels that are 25% lower than the standard are awarded a "Low Emissions" rating.

Technologies that Reduce Exhaust Emissions

• VVT (Variable Valve Timing)

Optimizing intake valve timing increases the recirculation of exhaust gases and delivers better fuel economy and power while producing low exhaust emissions.

Stainless Steel Exhaust Manifolds

Used in exhaust manifolds, stainless steel's lower heat capacity enables the catalyst to start functioning quicker, even when the engine is cold, to reduce exhaust emissions.

Catalyst

While improving upon its performance, attachment of the catalyst just downstream of the exhaust manifold provides for a compact layout and lower exhaust emissions when the engine is cold.

• Electronic Control EGR (Exhaust Gas Return)

Redirecting a portion of the exhaust back to the combustion chamber reduces pumping-loss during the intake process and the amount of NOx exhaust due to low combustion temperatures. Utilizing an electronic stepper motor to control the amount of EGR to the combustion chamber provides an optimum amount of EGR under any driving condition while improving fuel economy and reducing exhaust emissions due to a reduction in pumping-loss.

• Linear Air-Fuel Ratio Sensor

The utilization of a linear air-fuel ratio sensor provides a more accurate air-fuel ratio, finer control of fuel, a reduction in exhaust gases, and improved fuel economy.

TOPICS

First Utilization of a Direct-Injection Turbo Engine in a Mini Car
 First to achieve "Ultra-Low Emissions" level for reduced exhaust gas in the turbo engine mini car category — (Announced July 23rd, 2002)

Suzuki Motor Corporation has applied the Direct Injection Turbo Engine to vehicles in the mini car category. This type of engine utilizes a fuel injection device that injects fuel directly into the combustion chamber. In addition to being the first practical application of the direct injection engine in a gasoline powered mini vehicle, it is also the first to gain Ultra Low Emissions certification ($\star \star \star$) which represents a 75% reduction in exhaust gas emissions compared to the fiscal 2000 exhaust regulations. Although the engine is designed for mini vehicles with a displacement of 658cc, it offers both high output at 47kW (64ps) and excellent performance in reducing exhaust emissions.

Clean Energy Vehicles

Natural Gas Vehicles

Introduced in 1997, the "Wagon R" was the first such vehicle in the mini car class and was followed by the "Every" in 1999. As of March 2003, the "Every" is in the top of its class for driving distance on a single fill up. This vehicle also features wide passenger and trunk space as normally found in gasoline vehicles.

In overseas markets, we started selling vehicles that operate on either CNG (Compressed Natural Gas) or gasoline in Pakistan from 2001. From 2002, we are looking for expansion in this area.

At Suzuki, we take the country's needs into consideration and promote natural gas vehicles that match the country's needs like low pollution, gasoline substitute, and economy.

System Diagram

Every (Natural Gas Vehicle)

Electric Vehicles

Our first electric vehicles went on the market in 1978. Later in August of 1999, we developed and marketed electric vehicles (EV) based on newly revised mini vehicle standards.

Using a new permanent-magnet type synchronous motor and a single gear transmission, the vehicle offers a driving feel close to a vehicle equipped with an automatic transmission. The vehicle's 20 batteries are stored underneath the floor of the vehicle so that luggage space can be used the same as in the gasoline version. Its maximum speed is 95km/h and it can travel approximately 110km* on a single charge. In August 2001 we also added vehicles that are equipped with an inductive charging system (an

electromagnetic charging system that has no direct electrical connection to the vehicle).

Every Electric Vehicle

* Result from in-house tests (10/15 Mode)

Hybrid Vehicles

In designing our hybrid vehicles we have focused on "lower fuel consumption", "lower exhaust emissions", and "quiet operation". We are working to develop a low cost system in which the motor is directly connected to the engine and relies on lead batteries, and that can be used in a variety of vehicle types. In 2001, we started testing of some of these vehicles on public roads, and in 2002, we marketed the first hybrid mini car, the "Twin Hybrid".

Twin

TOPICS

 Suzuki Introduces the Economical and Practical 2-Seater "Twin" Mini Car — First Utilization of a Hybrid System in a Mini Car — (Announced January 22nd, 2003)

Suzuki started nationwide sales of its new "Twin" mini car from the 22nd of January 2003. The two passenger mini car "Twin" has 2 types of engine. One is the first commercially available mini car to utilize a hybrid system and the other is a 660cc gasoline powered engine. The hybrid system (Hybrid A) delivers excellent fuel economy at 34km/l in 10/15 mode, while its gasoline powered counterpart (Gasoline A) delivers excellent cost performance for its ¥490,000 price. Among the mini cars that are designed to reduce our reliance on resources, this new vehicle is more environmentally and people friendly.

Fuel Cell Vehicles

At Suzuki, we have long felt that the fuel cell vehicle is a strong candidate for contending with environmental problems and have made it our goal to equip mini vehicles with fuel cell technology. Before it is put into practical use though, we must consider many issues such as size and weight, cost, durability, recycling, etc. In October of 2001, Suzuki and GM (General Motors Corporation) agreed to long term cooperation in the development and advancement of fuel cell vehicles. In the future, we will join the JHFC (Japan Hydrogen Fuel Cell) project in working on practical application through testing on public roads.

Noise

We are working to develop ways to reduce the amount of noise produced by the vehicle's engine, transmission, air intake and exhaust systems, tires, etc. This development is aimed at all types of vehicles including commercial vehicles. As a result, all vehicles domestically manufactured and distributed by Suzuki are in compliance with domestic regulations in regard to vehicle external noise (1998-2001 Regulations).

Freon (Reducing Air Conditioner Cooling Refrigerant)*

Production started in May 2002 of a minor change Carry vehicle that is equipped with an air conditioning system designed specifically for truck use which allowed for its parts (evaporator, condenser, and receiver dryer) to utilize designs that are more compact than those of their predecessors. This led to a 170g reduction in the amount of refrigerant used in the system. (Previous system used in the Carry: $530g \rightarrow New$ System: 360g)

* The term "refrigerant" refers to Freon (HFC134a).

ITS*1/CEV*2 Cooperative Systems

Through the utilization of Information Technology, cooperative systems enable multiple users to use a single vehicle according to their needs. We are anticipating the creation of highly efficient and convenient city traffic systems that blend vehicles and public transport, and the promotion and quick expansion of low pollution vehicles. In March of 2002, the CEV Sharing Corporation was established. This company was the first to manage a cooperative ASP*3 system in Japan and Suzuki has joined and invested in this group.

We have also conducted public experiments such as the use of cooperative official vehicles used in local communities or events, etc., to promote cooperative systems and devise effective applications.

*2 CEV : Clean Energy Vehicle

*3 ASP : Application Service Provider

Recycling

To further promote and improve on recycling in our designs, we published our "Guidebook for Designs that Promote Recycling" (general version, automobile version, motorcycle version) in 1993 and "End-Of-Life Vehicle Voluntary Recycling Initiative" handbook in 1998. The guidebooks describe the recycling of materials but we can foresee the need for designs that reduce waste (Reduce Design), reuse (Reuse Design), and recycle (Recycle Design) in the near future. Thus, we are revising these guidelines from their original 1R (Recycle Design) concept to a 3R (Reduce, Reuse, and Recycle Design) concept.

Flow of Products, Parts, and Materials in the Recycling of Vehicles

Complying with the "Japanese Automobile Recycling Law" (Laws Concerning the Recycling, etc. of End-of-life Automobiles)

Since its enactment into law in July of 2002, the "Japanese Automobile Recycling Law" requires that automobile manufacturers must collect three materials such as shredder dust, Freon, and air bags, from end of life vehicles and properly dispose of these materials. In preparation of the enforcement of this law, we are taking an active part in Japan Automobile Manufacturers Association activities that will lead to the formation of a system meeting these needs.

Recyclable Designs

In our automobile designs, we are moving to increase the use of PP resins, which are much easier to recycle, and unify the materials being used in order to drastically reduce their number. This will

make it easier to classify the resins when the automobile is dismantled. We are also trying to unify the types of ABS (Acrylonitrile Butadiene Styrene) resins and reduce their number.

• Where PP Materials are Used (Twin)

We are increasing the number of places in which recyclable Polypropylene (PP) is used. The Twin uses PP materials in the places shown below.

Parts		Materials	Approx. Deformation Temp. (C°)		Parts		Materials	Approx. Deformation Temp. (C°)
	Lens	PC	120		Fender Extensions		PP	80
Headlamp	Housing	PP	130		Cowl Top Garnish		PP	100
	Reflector	BMC	130			Body	ABS	80
Roar Combination Lamp	Lens	PMMA	90		Door Mirrors	Housing	PP	80
Real Combination Lamp	Housing	PP	100			Cover	ABS	80
	Lens	PC	130		Door Handles		PC + PBT	80
	Housing	PP	100		Roof Moulding		PVC	80
Wheel Covera	Center Cover	PPO	80		Back Door Handle		PC + PBT	120
Wheel Covers	Full Cover	PP	80		Glass Moulding		PVC	80
Rumporo	Front	PP	100	1	Weather Strip		PP/TEO	80
Dumpers	Rear	PP	100	1 '	-			

Parts	Materials	Approx. Deformation Temp. (C°)
Room Lamp Lens	PC	130
Center Console	PP	80
Center Garnish	PP	110
Instrument Panel	PP	110
Rear Luggage Lid/ Rear Luggage Box	PP	80
Glass Hatch Trim	PP	80
Back Panel Trim	PP	80

• Abolishing Bumper Paint (Carry)

Bumpers had always been painted, however with the introduction of the Carry in May of 2002; we started using raw materials to color the bumpers. This eliminates the need for paint removal thus facilitating recycling of the bumper.

Recycling Other Industrial Materials

Leftover materials from the manufacture of paper disposable diapers are used as the base material in the door trim.

Unifying Materials

Door Scalp

- Recycled TEO* is utilized in both the core material and exterior.
- * Thermoplastic Elastomer, Olefinic

• Door Trim Impact Absorber Pad

We have changed from using PUR (polyurethane) to PP (polypropylene), the same material being used in the door trim's base material, to facilitate recycling.

Easy Dismantling

Tool Free Removal of Rear Bumper (MR Wagon, Twin)

Nuts and bolts were normally used to attach the rear bumper to the Wagon R however, bumpers on the MR Wagon are being attached with resin clips. This eliminates the need for tools when removing the bumper.

• Material Identification in Multiple Locations on Large Resin Parts

To prevent material identification failure peculiar to large parts, and material identification difficulty after the parts are cut into smaller pieces, large parts are being marked in multiple locations.

Markings

Recycling Leftover Materials

Trimmings left from other urethane parts are crushed then molded into parts for automobile seats. The parts listed below are made using recycled materials.

- 2 Rear Armrests......MR Wagon, Every 3 Seat Cushions......MR Wagon/Wagon R
- 4 Front Seat Backrest......Wagon R
- (5) Rear Pillow Every
- 6 HeadrestCarry

The passenger seat's under box in the Wagon R is also made using recycled materials.

Armrest

Headrest

Disposing of End-Of-Life Vehicles

Recycling Test

We are working together with shredding companies to better determine our recycling capabilities through experiments. In 2002, we shredded 20 older model Altos and 19 older model Wagon Rs in order to collect data related to the practical efficiency of recycling.

Data collected from these experiments is fed back to the relative sections for developing new designs. Our goal is to achieve a 95% practical efficiency rate in recycling by the year 2015. While working toward achieving our goal, we will continue monitoring.

Dismantling Test

Material unification, designs that provide for the easy removal of reusable parts, and reducing environmental impact, etc., are important factors that we must consider when designing our next generation vehicles. For this reason, we have dismantled vehicles by hand in order to check the materials that are used in the vehicle, and to collect related data. In 2002 we dismantled an MR Wagon, Lapin, Twin, Aerio, Aerio Sedan, Cruze, older model Alto, and older model Wagon R. Data gathered is used in developing vehicles that are easier to recycle and in establishing methods that can be used to predict recycling rate.

Efforts In Improving Recycling Rate

Working together with equipment manufacturers, we have tested methods that can be used to quickly separate metals from rubber parts (tires, weather stripping, etc.). Utilizing these techniques allows us to separate parts at the material level that were previously sent to landfills or burned, and use them more effectively. In the future, we will advance these material separating techniques and the efficient recycling of glass, etc. to improve the automobile's recycling efficiency rate.

Experimental shredding of older model Altos that have already been scrapped and pressed

Weather strip after separation

Materials with Environmental Impact

The use of lead, hexavalent chromium, mercury, and cadmium in automobiles sold in the EU will be regulated by order of the European ELV from July of 2003. We are quickly moving to contend with this regulation while trying to reduce materials with environmental impact domestically.

As an example, we have already initiated a lead-free electroplating process in our plants, and we are moving forward in eliminating other lead parts, lead based paints, surface coatings that include hexavalent chromium, and eliminated the use of cadmium, etc.

Reducing Lead

In one of our plans to reduce the amount of materials with environmental impact, we completed a switchover from the use of lead wheel balance weights, to cast iron wheel balance weights in all of our automobiles by the end of 2002. In doing this we could achieve our 2005 goal of cutting the amount of lead to less than 1/3 the amount used in 1996, by the end of 2002. The original 2005 goal was a voluntary action plan established by the Japan Automobile Manufacturers Association.

Other Materials with Environmental Impact

We are making progress in the reduction of mercury, hexavalent chromium, and cadmium. As an example, some metal parts are now finished with a hexavalent chromium free finish, which has proved to be just as durable against corrosion as hexavalent chromium finishes.

Developing Lead-Free Solder

Solder containing lead (tin 6: lead 4) is used in the Electric Control Unit (ECU) but research is underway to develop a lead-free solder that will enable us to move away from the current lead-based solder. Until recently, lead-based solders have been considered the best choice while lead-free solders suffer from problems like too high of a melting point, etc. Research and development is currently underway that will lead to the development of a lead-free solder that is reliable enough for use in critical components like the ECU. At present, a lead-free solder is being used in the EMCD (Electro Magnetic Control Device) controller that is found in the Chevrolet Cruze that was introduced in November of 2001. We will continue to convert to lead-free solders as the related technologies improve.

Reducing the Environmental Impact of Lead

EMCD Controller

Motorcycles This section introduces activities related to Suzuki Motorcycles.

Fuel Economy

• The 50cc "Choinori" scooter utilizes cylinders that are plated using our own high-speed plating technology which provides enhanced heat dissipation and prevents wearing, while offering reduced weight and compact size.

By using compact parts, and integrating resin parts, etc., we have reduced the total number of parts by about 3/10 and reduced the weight by about 2/ 5 (from 70kg to 39kg) compared to previous models.

At the same time, we have improved fuel economy through the adjustment of output characteristics, gear characteristics, carburetor setting, etc. (75km/l [at a constant speed test value of 30km/h])

• The 250cc and 400cc "Sky Wave 250/400" scooters utilize a fuel injection system to improve the practical use of these scooters. Improvements in fuel economy were achieved using a fuel cut system and precise A/F (air/fuel ratio) control.

Sky Wave 250 : 39km/L \rightarrow 41km/L [at a constant speed test value of 60km/h] Sky Wave 400 : 35km/L \rightarrow 36km/L [at a constant speed test value of 60km/h]

Sky Wave 400

Exhaust Emissions

The Sky Wave 650 incorporates a fuel injection system, honeycomb catalysts, and second stage air system. Technologies accumulated through years of development have been applied in areas such as engine layout and optimizing control systems in order to reduce exhaust emissions. (Meets 1999 Exhaust Emission Regulations)

This section introduces some of the methods utilized in reducing noise in the large "Sky Wave 650" scooter.

Sky Wave 650

1 Utilization of an Electronically Controlled CVT*

This is the first ever utilization of an electronically controlled CVT in a motorcycle. It allows reduced engine rpm and operating noise, while improving on fuel economy under normal driving conditions.

* CVT: Continuously Variable Transmission

(2) Utilization of Helical Gears and Sound Absorbent Cover

A helical gear system utilized in the transmission reduces operating noise when driving.

To reduce noise, the gear case cover incorporates sound absorbent materials to block transmitted sound and resonance sound of the case.

3 Utilization of Sound Absorbent Body Covers

Sound absorbent materials are incorporated in covers on both sides of and underneath the engine to reduce noise emissions.

(Meets 2001 noise regulations)

Electronically Controlled CVT

Helical Gear

Reduced rpm under normal driving conditions

Sound Absorbent Cover

Sound Absorbent Body Cover

Recycling

Recycling is promoted in our motorcycle production in conjunction with our automobile production. Please refer to the recycling section for automobiles as well. \rightarrow P.19

Recycle Designs

Within our 3R (reduce, reuse, recycle) designs, here are some examples of efforts made to improve the reduction and recycling efficiency used on the "Choinori" scooter.

Lightweight, Compact Design (Dry Weight 39kg = Reduce)

- The utilization of plated aluminum die-cast cylinders, etc., produced a lightweight design that achieved a reduction in weight of about 40%*.
- Reducing the Number of Parts (Easy Dismantling Designs = Recycle)
 - Engineers worked hard at reducing the number of parts. (About a 30% reduction*.)
 - Reduced the places that use nuts and bolts. (About a 50% reduction*)

③ Using Colored Resins (Easy to Recycle Materials = Recycle)

- The use of colored resins reduces the need for painting.
- **④** Using Recycled Resin and Materials (Recycle)
 - Reused material : Front fender
 - · Recycled material : Leg shield lower cover
 - * Compared to our 50cc scooter models

Materials with Environmental Impact

Reducing the Amount of Lead

Using activities in our automobile production as a reference, we have set goals to reduce the use of lead in our motorcycles, and we are moving to reduce materials with environmental impact.

From the 2003 model year, our SV1000S utilizes lead-free wheel balancing weights. In the future, we will expand the use of these weights to all models.

Other Materials with Environmental Impact

Using activities in our automobile production as a reference, we have set goals to reduce the use of hexavalent chromium, mercury, and cadmium to reduce the use of materials with environmental impact in our motorcycles. Other reduction in the use of materials with environmental impact can be found in the use of a colored resin, which is highly weather resistant, on the "Choinori" scooter's leg shields. Since they need not be painted, organic solvents are not released into the air.

SV1000S

TOPICS

Domestically Manufactured, The Low-Priced 50cc Choinori Goes On Sale For ¥59,800. (as reported January 22nd, 2003)

Priced at a ¥59,800, sale of the all-new domestically manufactured "Choinori" scooter starts nationwide from the 11th of February. The scooter is equipped with 4 cycle 50cc engine that is 40% lighter than previous engines due to the utilization of a "high speed plating" cylinder, etc., and delivers excellent fuel economy of 76km/l at a constant test speed value of 30km/h. Efforts in rationalizing design and the manufacturing process achieved extraordinary results. Utilizing compact parts, a newly developed engine, newly designed frame, integration of resin parts, etc., we could achieve a 40% reduction in weight, a 30% reduction in parts, and a 50% reduction in the places requiring nuts and bolts compared to previous models.

Special Products

In this section we introduce activities related to Suzuki Marine and Power Products (Electric Vehicles, Boats, Outboard Motors, Generators, Ultrasonic Equipment, etc.)

Fuel Economy

Outboard Motors

A new model four-stroke outboard motor has achieved a 45% improvement in fuel economy under maximum performance conditions compared to its two-stroke counterpart, while its four-stroke technology effectively reduces CO₂ emissions.

Snowmobiles

The new model equipped with electronically controlled fuel injection has achieved an approximate 17% improvement in fuel economy compared its carburated counterpart.

Exhaust Emissions

Outboard Motors

EPA^{*1} and CARB^{*2} regulations, which both restrict HC+NOx^{*3}, have been in effect since 1998. Due to the many difficulties involved in conforming two-stroke technology to comply with these regulations, we have introduced new four-stroke engines to the market. With the introduction of the DF6 (export model) in October of 2002, our lineup now offers 14 models that range from 2.9kW (4ps) to 103.0kW (140ps). (12 models, from 3.7kW (5ps) to 103.0kW (140ps) are available domestically.) The change to fourstroke technology in our lineup has led to an approximate 85% reduction in exhaust emissions (Compared with the same output).

- *1 The United States Environmental Protection Agency.
- *2 California Air Resource Board.
- *3 Hydrocarbon + Nitrogen Oxide

< Comparing Exhaust Emissions Regulations > (HC+NOx: Unit (g/kW-hr)

	DF4	DF5	DF6
2006 EPA (Same as the Japan Boating Industry Association's regulations)		81.0	
2004 CARB		64.8	

200 150 100 0 DT5Y (2-Stroke Engines) 100 0 DT5Y (4-Stroke Engines)

2006 EPA Exhaust Emissions Standards

Snowmobiles

Starting with 2006 models, EPA emissions regulations will be phased in, in two steps. Phase one will require a 30% reduction compared to the current average, and phase two will require a 50% reduction. Although we have already developed four-stroke engines that comply with phase two of the EPA emission regulations (2010 regulation values), we are moving forward in the development of new engines. We have also produced cleaner two-stroke engines through the utilization of electronically controlled fuel injection.

< EPA Emission Regulations >

		Number of units manu-	Regu	lation	Value	FEL	. Maxim Value	num
Phase	Model Year	factured that must meet regulations	нс	HC+ NOx	со	нс	HC+ NOx	со
1	2006	50%	100	-	275	-	-	-
1	2007-2009	100%	100	-	275	-	-	-
2	2010-2011	100%	75	-	275	-	-	-
3	After 2012	100%	75	,	k	150	165	400

Unit (g/kW-hr)

* Regulations are more detailed

EPA Phase 2 Snowmobile Emission Regulations

TOPICS

Proportion of Four-Stroke Outboard Motors

We have expanded the number of four-stroke models offered in our Marine and Power products lineup in our efforts to improve fuel economy.

Current circumstances and future goals in promoting four-stroke outboard motors are shown in the graphs below.

Noise

Outboard Motors

In addition to switching to four-stroke engines, we have also taken a close look at the intake and exhaust systems for further reduction in noise. With four-stroke engines, we could achieve an approximate 4dBA reduction in noise compared to the former two-stroke engines when operating at full output.

Recycling

In all of our marine and power products, we have reduced use of material with environmental impact and utilized designs derived from our automobile and motorcycle products that offer easier recycling.

Recycle Designs

One product that is difficult to recycle is the outboard's body. FRP (glass fiber reinforced resin) used in the outboard design is a very difficult material to recycle but we are developing a method which makes its recycling possible. Suzuki has joined with the Ministry of Land, Infrastructure and Transport's "Recycling System for the Scrapping of FPR Boats" project to develop a system that allows the recycling of FRP boats.

In 2002, we manufactured an Eco-Boat for trial purposes and exhibited it at boat shows.

Materials with Environmental Impact

• Reducing the Amount of Lead

In outboard motors, we have switched to a resin fuel tank from April of 2001. Earlier fuel tanks relied on steel plated with a lead alloy but due to this change, fuel tanks are now lead-free.

Other Materials with Environmental Impact

Mercury and cadmium are not used in our Marine and Power products. In one activity for hexavalent chromium, unique to outboard motors, we have begun study in the development of a substitute for chromic acid chromate, including hexavalent chromium, that is used in preventing the corrosion of aluminum.

Manufacturing and Purchasing

Environmental conservation in our manufacturing activities covers a wide range of activities. Areas related to manufacturing and purchasing that we are actively working in are; energy reduction (reducing CO₂), waste reduction (recycling), chemical substance control, green procurement, proper response to environmental accidents and community communication, etc.

CO2

As CO2 exhaust emissions are responsible for global warming, we are working to reduce these emissions in the manufacturing process. The goal of the Suzuki Group is by the year 2010, to reduce the amount of CO2 emissions per sales by 20%, as compared to 1990 levels. CO2 reducing measures that have been put into effect to this date are changing the heat source of air-conditioning systems at the Takatsuka Plant, attaching inverters in our manufacturing facilities (pumps, fans), inverter lights, whole zone air-conditioning, and establishing and operating under energy management standards. Through these efforts, we could realize a 15.3% reduction in CO2 emissions per

sales compared to levels in 1990. Also, a large wind turbine power generator was installed at one of our training centers, and commenced operation on April 8th 2003. Another wind turbine power generator will be installed at our Kosai plant and begin operation from February of 2004.

Trends in and Goals for CO2 Exhaust Emissions

- * To match with other data we have revised the range that makes up the total. (6 Suzuki plants + 8 related companies \rightarrow 6 Suzuki plants.)
- * Long term goal for the amount of CO2 emissions: Amount of CO2 emissions per sales in 2010, 20% reduction compared to 1990.

Waste

Through drastic reduction in the amount of waste produced in our domestic plants that is sent to landfills, we achieved zero level* in August of 2001. Even after achieving zero level, we are trying further to reduce waste and promote recycling and from November of 2002, we are maintaining zero level for landfill waste.

* Zero level: Less than 1% landfill wastes compared to the amount sent in 1990 (24.675t).

Amount of Waste and Landfill Waste

< 2002 Results of Waste in Domestic Manufacturing Plants >

(Ont i)								
	Total	Mar	Manner of Disposal					
Plant	Amount of Waste	Company Disposal	Recycling	Disposal by Con- signment	Landfill Wastes *1			
Takatsuka Plant	2,126	1,059	974	93	4.4			
Iwata Plant	2,361	1,526	835	0	0			
Kosai Plant	7,078	4,027	3,051	0	0			
Toyokawa Plant	769	505	260	4	0.4			
Osuka Plant	18,536	531	18,004	1	0			
Sagara Plant	5,394	1,007	4,387	0	0			
Total	36,166	8.655	27.511	98	4.8*2			

*1 The amount of landfill waste is the actual amount of waste after subtracting waste that is taken by consignment.

*2 Compared to 1990 levels: about 0.02%

< 2002 Results of Waste in Subsidiary Domestic Manufacturing Companies > (Unit : t)

	Total	Mar	nner of Disp	osal	Amountof
Company	Amount of Waste	Company Disposal	Recycling	Disposal by Con- signment	Landfill Wastes *1
Suzuki Hamamatsu Auto Parts Mfg. Co., Ltd.	233	0	71	162	136
Suzuki Precision Indus- tries Co., Ltd.	1,303	0	754	549	16
Hamamatsu Pipe Co., Ltd.	27	0	15	12	9
Suzuki Akita Auto Parts Mfg. Co., Ltd.	786	0	274	512	99
Enshu Seiko Co., Ltd.	406	0	145	261	22
S. Tech Co., Ltd.	131	0	0	131	7
Snic Co., Ltd.	497	58	366	73	73
Suzuki Toyama Auto Parts Mfg. Co., Ltd.	326	0	21	305	250
Total	3,709	58	1,646	2,005	612

1 The amount of landfill waste is the actual amount of waste after subtracting waste that is taken by consignment.

Promoting the Effective Use of Resources

To control the occurrence of by-products such as metal waste and waste casting sand, as required by the "Promoting the effective use of resources" law which went into effect in April of 2001, we must create a "Controlling the Occurrence of By-products Plan" and report its results.

In 2002, we promoted the use of leftover materials and different shaped blanks in an effort to control the amount of steel waste produced by press production.

Amount of By-products Produced per Shipping Value

* The value marked for fiscal 2006 is the value set in accordance with the "Promoting the effective use of resources" law.

Amount of Incinerated Waste

Dioxin compliant incinerators at our Kosai plant are used in reducing waste by collectively disposing of burnable waste, and using the produced heat effectively. We are also working to reduce the amount of waste that is burned in our incinerators. In 1999, we burned 9,000 tons of waste but by 2002, we could reduce the amount to 6,800 tons.

Amount of Incinerated Waste

Dioxin

O2 control for our incineration management, etc., has resulted in reduced dioxin levels. Dioxin was 0.092ngTEQ/Nm³ in fiscal 2002. Since this value is about 1/50 of the 2002 regulatory limit of 5ngTEQ/Nm³, it is sufficiently low.

Amount of Water Used

We are working to conserve water and reuse wastewater in order to reduce the amount of water used in our domestic manufacturing plants.

Some methods we are utilizing are airtight cooling towers, compact air-conditioners, water conserving faucets, rainwater collection, collection of water from coolers, and reuse of wastewater.

Materials with Environmental Impact

PRTR (Pollutant Release and Transfer Register) Targeted Substances

To reduce materials with environmental impact, we are working to reduce PRTR targeted substances.

In 2002, efforts were made to reduce the number of PRTR targeted substances used in paints or cleaning thinner used in the Iwata plant. In doing so we could reduce the number of PRTR targeted substances that are used and emitted.

Amount of PRTR Materials that are Used and Emitted

Purchasing New Substances

When the purchase of materials such as paints, oil, detergents, etc. is necessary, our environmental management section discusses the substance's toxicity, how much of it will be used, how it will be used, how it will be stored, etc., then decides whether the substance should be purchased or not. Data gained from these investigations is used and managed as PRTR data, which is then utilized when working to reduce the volume of these materials.

VOC (Volatile Organic Compounds)

VOC materials are mainly solvents used in the painting process. We are working to reduce the amount of VOC that is emitted in the automobile body paint process to 35g/m² by fiscal 2005. In fiscal 2002, we improved the collection rate of electrostatic paint, unified the coat thickness of the electrostatic paint, and shortened the coating distance in topcoating to reduce the amount of VOC emissions.

In our overseas plants, we are also working to reduce the amount of VOC emissions. In Magyar Suzuki (Hungary), we are utilizing water-soluble paints for the metallic base paint to reduce the amount of VOC emissions to less than 45g/m². Also, SMAC in the USA (ATV manufacturing plant) which started operation in May of 2002, is utilizing powder paint for the top coat to eliminate the use of organic solvents.

Specified Freon (CFC-12, CFC-22)

In 1969, we started the utilization of an absorbent type water-heater/cooler that does not use CFC-22. This is now utilized in all of our plants.

Freon Substitution

In our automobile manufacturing lines, we are working to reduce the amount of automobile air-conditioner refrigerant that is discharged into the air. In 2002, we took measures to reduce air-gauge leakage in our Iwata plant and Kosai plant. This effort resulted in a 64% reduction in emission compared to the previous year.

Management Flow for Purchasing New Substances

Amount of VOC Emissions

PCB (Polychlorinated Biphenyls)

Concerning transformers and condensers that use PCBs (polychlorinated biphenyls), we have a total of 1,097 such devices in our 5 plants. 12 of these are still being used in two of our plants while the remainder of the devices, 1,085 in all, are safely stored in a secure storage facility.

Also, based on the "Special Measures to Promote Proper PCB Waste Disposal", which was enacted in July of 2001, we completed the proper notification of PCB storage conditions, etc.

Reducing the Usage of Lead

The electrostatic painting process (undercoat) of both motorcycles and automobiles in all of our domestic plants is lead-free. (March 2001)

Six overseas plants in six countries are also using lead-free electrodeposition coating and three other plants in three countries are currently converting.

Green Procurement

Even in our relationships with suppliers, we try to promote the production of products that are environmentally friendly, and purchase products and materials that have less impact on the environment. We are working together with related companies to reduce lead, hexavalent chromium, mercury, cadmium, etc., to comply with regulations by the European ELV.

In our overseas plants, 23 companies in 16 countries are also working to reduce materials with environmental impact that are found in supplies or materials being purchased.

Communication

We regularly hold meetings with residents in the local community to ask their opinions, which are used to improve our company activities. In 2002, we held four community meetings in three of our plants. We also held 511 study observations in 6 plants.

Environmental Incidents, Emergency Compliance, etc.

Related to Environmental Incidents, etc.

In 2002, we had two environmental incidents. The two incidents were related to discharged water at our Kosai plant and both received quick response with countermeasures.

We received five complaints. One concerned foam that had spread from the Takatsuka Plant to neighboring properties and was met with a quick response and countermeasures. In the other four complaints, three of them concerned offensive odors and the other noise at our Iwata plant. In regard to the odor, there have been no further complaints after completing steps in November to reduce the smell from materials used in the painting process, etc. We are working to improve the noise problem through adjustment of the air-conditioner's balance, etc.

Environmental data for each of our plants can be found on pages 47 - 52.

Environmental management systems are also being created for our overseas plants to prevent environmental incidents from occurring in manufacturing activities.

Organic Chlorine Chemical Compound

After organic chlorine chemical compounds (trichloroethylene and cis-1, 2-dichloroethylene) were discovered in the groundwater at the Takatsuka Plant in January of 1999, we initiated a continuous cleanup effort of the underground water and took measurements along the site boundaries. Consequently, pollutants have not been detected at monitored sites along the site's boundaries after 1999 so we are confident that pollutants have not progressed beyond our boundaries. We are continuing our groundwater cleanup efforts to prevent pollutants from leaking.

Emergency Response Drills

Assuming that an environmental accident has the potential of occurring anywhere in the workplace we practice emergency procedures with our employees, transportation companies, etc. In 2002, we held a total of 117 emergency drills.

Environmental Conservation in Developing Countries

At our manufacturing bases located in developing countries, we have implemented voluntary regulations that equal environmental and emissions standards found in Japan. We also provide technical support, information, and education on environmental conservation.

Distribution

In the manufacturing sector, transportation is an absolute essential and reducing environmental impact related to distribution is an important issue. Energy consumption, exhaust emissions, discharge of packing materials, etc., are environmental impacts that are associated with distribution and we are working to reduce these impacts through the utilization of various methods.

Distribution Within Plants

This section concerns the distribution within our manufacturing plants.

Automobiles • Transporting Vehicles Within the Plant

A battery powered Automatic Guided Vehicle (AGV) system allows us to move completed vehicles and parts within our plant thereby eliminating the CO₂ that would be produced from driving the completed vehicles.

Product Distribution

This section concerns the distribution of products from our product manufacturing plants to the dealers selling new vehicles.

Automobiles • Transport by Sea

We have encouraged the use of sea transport for automobiles being mainly sent to distant domestic locations. In fiscal 2002, approximately 40% of all automobiles were transported to Hokkaido, Tohoku, Chugoku, Shikoku, and Kyushu regions via ship. Transportation to the Chiba Distribution Center also utilizes sea

transport via Chiba Port. Compared to land transportation by truck, the utilization of sea transport produces about 25% of the CO₂ per ton. Compared to transporting everything by truck, the utilization of ship reduces the production of CO₂ by approximately 30%.

Motorcycles • Direct Delivery System

Our present day society requires a rational and efficient distribution system. To reduce environmental impact related to shipping manufactured motorcycles from the plant to the dealer, we have rethought how our motorcycle distribution system works.

Up to this time, transporting finished motorcycles to dealers meant having to pass through many distribution points such as business centers, etc. In order to reduce energy loss and to shorten transport time, we are encouraging the merger of distribution points promoting a direct delivery system from the plant to create a more rational and efficient distribution system.

< Direct to Dealer Delivery System >

(Unit : %)

				(
	1995 Results	2000 Results	2001 Results	2002 Results
Direct to Dealer	-	22	64	98
Via Business Centers	100	78	36	2

The Motorcycle Distribution System (Merging Distribution and Relay Points)

Distribution of Parts, Accessories

This section describes the distribution of products from suppliers or parts manufacturing factories to parts factories and parts factories to parts/accessory dealers.

Reducing the Amount of Cardboard

Replacement parts were shipped in cardboard boxes (like those shown on the left side of the photo) but we are switching to returnable plastic containers (shown on the right in the photo) to reduce the amount of cardboard used in shipping. The plastic containers are collapsible to increase efficiency in transporting.

Reusing Cardboard

Waste cardboard material that is produced at the factory is being reused as cushioning material. With this method, we could reduce the amount of waste cardboard by 20%.

Recycling

Packing Materials

For KD (knock down) shipments to overseas factories, we are working to reduce the amount of wood used in crating.

Contraction of the second seco

1 From Wood Crates to Steel Containers and Returnable Racks

We initiated a plan to reduce the amount of wood used in shipping crates by switching to steel containers, however, the one-way nature of the shipments results in scrapping of the containers.

We have already switched to returnable racks for shipping engine and transmission components. For other parts, we are planning to change to a similar system from this year.

2 Wood Free Crating*

From 2002 we started the use of an open crate design which does not use wood to hold the parts being shipped. At present, we have nearly eliminated the use of wood. In March of 2003, only 75 crates out of 29,138 used wood lining.

* Crating is used to hold parts in place to prevent damage from load shifting, etc. during transport.

Utilizing returnable racks to transport engines from Japan to our CAMI Automotive Inc. in Canada eliminated the need for packing materials.

At our SMAC (ATV manufacturing plant), which started production in 2002, the utilization of returnable racks to transport engines from Japan reduced packing materials by approximately 12kg per vehicle. Each company will change its parts delivery system to a returnable box system to reduce the need for packing materials and simplify packing. Packing materials that are used in the delivery of parts are reused to pack completed products or spare parts.

Sales and Service

This section introduces activities carried out by Suzuki Dealers (subsidiary dealers) to reduce environmental impact occurring in the sale, maintenance, repair, etc., of consumer products.

Recycling, Proper Disposal

Used Parts, End-of-Life Vehicles

• Preventing the Discharge of Freon

By April of 2000, we had installed Freon collecting machines in all of our certified and designated service centers and used car sales bases of domestic distributors to collect the Freon (CFC12 and HFC134a)^{*1} gas used in automobile air conditioners rather than discharge it into the atmosphere.

In cooperation with the "Law regarding the collection and destruction of Freon"*² which was enacted in October of 2002, we created and put into operation an "Automobile Freon Collection and Destruction System", and all of our automobile dealers have been registered as receivers. In doing this, any of our dealers receive an end-of-life vehicle equipped with an air conditioner from a customer and deliver these vehicles to a registered Freon recovery operator.

- *1 CFC12 is recognized as a substance connected to the depletion of the ozone layer and global warming, and HFC134a is recognized as a substance connected to global warming.
- *2 The law's official name is "Fluorocarbons Recovery and Destruction Law" and was established to prevent the depletion of the ozone layer and global warming through the collection and destruction of Freon used in air-conditioners of end-of-life vehicles, in the cause of healthy and cultural life.

TOPICS

 About the fee charged on Suzuki Automobiles for the air-conditioning related "Fluorocarbons Recovery and Destruction Law" (Reported July 29th, 2002)

In compliance with the air-conditioning related "Fluorocarbons Recovery and Destruction Law" Suzuki and the Japan Automobile Recycling Promotion Center entered into a consignment contract. According to this contract, the recovery fee for recovering Freon from a Suzuki automobile would be fixed at ¥2,580 per vehicle (including tax). When scrapping a car, the owner must purchase an "Automobile Freon Ticket" at any Post Office, or convenience store and present it with the automobile. We are working with the center to ensure that the recovery of Freon is carried out smoothly and safely in accordance with the "Fluorocarbons Recovery and Destruction Law".

財団法人 自動車リサイクル促進センター

Japan Automobile Recycling Promotion Center

Collecting and Disposal of Air Bag Inflators*

We collect and dispose air bag inflators* since the automobile industry considers that the collection and disposal of unused air bag systems can be dangerous. From September of 1999, Suzuki worked hard in distributing a manual and providing guidance, etc., to its nationwide dealers.

* Air bag inflator:

This unit integrates a gas generating propellant, ignition agent and an ignition system to inflate the airbag.

Reference from the Japan Automobile Manufacturers Association, Inc.

End-Of-Life Vehicle Inflator **Removal Manual**

Airbag Disposal System Flow and Related Roles

Note: Removal of the inflator can be performed at the dealer or repair shop if they are registered.

According to an experimental system performed as a trial

Japan Automobile Manufacturers Association, Inc.

Collecting and Recycling Bumpers

Used bumpers that have been removed due to repair or exchange are collected and recycled. From 1994, we started collection of these bumpers in Shizuoka Prefecture and parts of the Kanto region, increasing areas until the program went nationwide in 2001. From 2000, we introduced a newly developed bumper crushing machine to improve the efficiency of transportation.

< Bumper collecting Areas and Collection Points > (as of April 2003) Hokkaido Suzuki Motor Sales Niidata Suzuki Motor Sales Tottori Suzuki Motor Sales Hokkaido Prefecture Prefecture Region Hokkaido Inc. Niigata Inc. Tottori Inc. Suzuki Motor Sales Suzuki Motor Sales Shimane Suzuki Motor Sales Aomori Toyama Toyama Inc. Prefecture Aomori Inc. Prefecture Prefecture Shimane Inc Iwate Suzuki Motor Sales Iwate Ishikawa Suzuki Motor Sales Higashi Chugoku Suzuki Prefecture Prefecture Hokuriku Inc Motor, Inc Inc. Chugoku Okayama Prefecture Suzuki Motor Sales Suzuki Motor Sales Region Suzuki Okayama Hanbai, Miyag Fukui Tohoku Prefecture Miyagi Inc. Prefecture Hokuriku Inc Inc. Region Suzuki Motor Sales Akita Yamanashi Yamanashi Suzuki Hiroshima Akita Suzuki, Inc. Prefecture Hanbai, Inc. Prefecture Hiroshima Inc. Chubu Prefecture Region Yamagata Suzuki Motor Sales Nagano Suzuki Motor Sales Yamaguchi Suzuki Motor Sales Prefecture Prefecture Yamagata Inc Nanshin Inc. Prefecture Yamaguchi Inc Fukushima Suzuki Motor Sales Gifu Tokushima Suzuki Motor Sales Gifu Suzuki Hanbai, Inc. Prefecture Fukushima Inc Prefecture Prefecture Tokushima Inc. Suzuki Motor Sales Suzuki Motor Sales Suzuki Motor Sales Ibaragi Kagawa Prefecture Ibaragi Inc. Shizuoka Shizuoka Inc Shikoku Prefecture Kagawa Inc. Prefecture Region Tochigi Suzuki Motor Sales Suzuki Motor Sales Ehime Suzuki Motor Sales Prefecture Hamamatsu Inc Prefecture Matsuyama Inc. Tochigi Inc Suzuki Motor Sales Suzuki Motor Sales Suzuki Motor Sales Gunma Aichi Kochi Prefecture Prefecture Prefecture Gunma Inc Chubu Inc Kochi Inc Suzuki Motor Sales Mie Suzuki Motor Sales Mie Suzuki Motor Sales Fukuoka Saitama Inc. Prefecture Prefecture Fukuoka Inc. Inc. Kanto Saitama Region Prefecture Suzuki Bp Center Shiga Prefecture Suzuki Motor Sales Saga Prefecture Suzuki Motor Sales Saga Shiga Inc. Saitama, Inc. Inc. Chiba Suzuki Motor Sales Suzuki Motor Sales Nagasaki Suzuki Motor Sales Prefecture Chiba Inc. Kyoto Inc. Prefecture Nagasaki Inc. Kyoto Suzuki Motor Sales Suzuki Bp Center Kinki, Kumamoto Suzuki Motor Sales Tokvo Tokyo Inc. Inc. Prefecture Kumamoto Inc. Kinki Kyushu Kanagawa Region Suzuki Motor Sales Suzuki Motor Sales Kinki Region Oita Suzuki Motor Sales Ohita Osaka Prefecture Kanagawa Inc Prefecture Inc. Inc. Suzuki Motor Sales Suzuki Motor Sales Hyogo Miyazaki

Prefecture

Wakavama

Prefecture

Nara Prefecture Hyogo Inc.

Inc.

Suzuki Motor Sales Nara

Suzuki Motor Sales

Wakayama Inc.

Collecting and Recycling Used Bumpers

Prefecture

Kagoshima

Prefecture

Prefecture

Okinawa

Miyazagi Inc.

Okinawa Inc.

Kagoshima Inc.

Suzuki Motor Sales

Suzuki Motor Sales

The Manifest System (End-Of-Life Vehicle Management List)

To promote the proper disposal of end-of-life vehicles, a manifest system was introduced in December 1998. This system was revised and strengthened after disposal laws were amended in April 2001. The manifest system is used to manage and check whether the dismantling and disposal of end-of-life vehicles is properly carried out or not. Suzuki has distributed pamphlets to dealers and makes regular inspections to enforce the manifest system.

End of Life Automobile Management List (Manifest) Practical Manual

Reference from the Japan Automobile Manufacturers Association, Inc.

End of Life Motorcycle Management List (Manifest) Practical Manual

Reference from the Japan Automobile Manufacturers Association, Inc.

Vehicle Dismantling Information

When dismantling vehicles, Suzuki follows the manual "Removal Manual Prior to Dismantling of Automobiles and Motorcycles" put out by the Japan Automobile Manufacturers Association, and its own manual "Dismantling Manual for Automobiles", to properly dispose of end-of-life vehicles.

Also, to deal with ELV (End-of-Life Vehicle) laws in the EU, Suzuki, in 1999, cooperated with the IDIS (International Dismantling Information System) to provide dismantling businesses in the EU with dismantling information on CD-ROM or from a web site.

Dismantling Manual for Automobiles

Reference from Suzuki

Removal Manual Prior to Dismantling of Automobiles and Motorcycles

Reference from the Japan Automobile Manufacturers Association, Inc.

Management, General

This section introduces environmental activities related to the offices of Suzuki's employees.

Zero Waste

Efforts to improve work efficiency in the office place started in 1985 and in 1992, the movement was named "Zero Waste Movement". Through increased work efficiency and waste reduction, our goal is to reduce the amount of energy and resources used in the office place, and to strive for further recycling.

Reducing Energy

To promote energy saving, we turn off lights, office equipment such as computers, printers, and copy machines, etc. during lunch breaks, after work, and when we are out.

Renewal of Suzuki's "Stop Idling Campaign" Poster

April 1st 2002 marks the start of the second year of our company wide "Stop Idling Campaign". Last year, we worked to make the campaign known to all of our employees, as well as domestic related and subsidiary companies. And this year being the second year, we are working to ensure that the campaign is being fully carried out. In conjunction with this, we have renewed the Idling Stop Campaign poster to provide the campaign with a fresh feeling.

TOPICS

Notice

The Ministry of Economy, Trade and Industry's Resource Energy Agency is offering subsidies to those who purchase a vehicle equipped with an Idling Stop System. Suzuki's "Alto EPO Lean Burn Engine equipped with an Idling Stop" model was selected as being eligible for the program. (Between May 2003 and February 2004.) For more information, contact the "Reducing Energy Center" steering office.

Reducing Resources, Recycling

We strive to achieve a paperless office through the use of computer equipment and we use recycled paper and the reverse side of already used papers in copy machines and printers as much as possible.

Example) Document approval is done electronically and the use of

electronic forms from our host computer has been imple-

At our head office, we sort and collect newspapers, magazines, catalogs, and cardboard for recycling.

Other papers are incinerated at our Kosai incinerator and the ashes are recycled.

mented < Flow of Waste Disposal >

	Dis	pos	al Within Company			Di	sposal Throug	h Contracte	d Operators		
Waste Type	Collection/ Transporta- tion		Mid Disposal		Collection/ Transporta- tion		Mid Disposal	Handling Method	Final Disposal	Handling Method	Remarks
Newspapers, Maga- zines, Catalogs	_		→					Compres-		Melting	Recycled as Paper
Cardboard	,						(Private	sion	(Private	moning	Recycled as Cardboard
Wastepaper	(Private		Incinerate Soot	t rs →	(Private Operator)		Operator)	Melting	Operator)	Shredding	Used as Road Building Material
Confidential Documents	Operator)	→	pany (Kosai Incineration Facility)			→		Sorted		Sintering	Mixed with Cement
Wastepaper from New Employee Dormitory Weekend Waste From	→		→				Hamamatsu City South Garbage	Incinera- tion	Hamamatsu City Heiwa Garbage	Landfill	Ash disposal in Iandfill
Head Office							Plant		Plant		

< Cost of Disposal >

Unit : Kg

< Amount Disposed >

	Newspapers, Magazines, Catalogs	Cardboard
Fiscal 2000	31,130	147,240
Fiscal 2001	34,140	161,660
Fiscal 2002	30,160	187,600

	Newspapers, Magazines, Catalogs	Cardboard
Fiscal 2000	337,500	761,870
Fiscal 2001	337,500	1,158,330
Fiscal 2002	350,000	1,217,075

2122

Unit: ¥

Green Procurement

To reduce environmental impact we use recycled paper for office paper, name cards, etc. used in the office. We are also working to increase the amount of environmentally friendly office supplies, office appliances, etc.

Introducing Low Emission Vehicles

Low emission vehicles are being introduced into our fleet of business vehicles (company vehicles used for business activities by our employees). Out of a fleet of 311 vehicles, a total of 113 low emission vehicles (36%) were in the fleet as of March 2003. Two of the vehicles are "Twin Hybrid" models, which have started selling from January of 2003. In the future, aging fleet vehicles will be replaced with low emission vehicles. Our goal is to have 50% fleet of low emission vehicles by the end of March 2005, and 70% by the end of March 2007.

TOPICS

 Twin Hybrid Introduced as Business Vehicle (Reported March 15th, 2003)

Suzuki introduced two of its own Twin Hybrid vehicles into its fleet of business vehicles. This gives our employees the chance to evaluate the vehicle from the consumer's point of view. Employee opinions, along with those of the consumer, are then used in improving our hybrid vehicles.

Suzuki Creates "Low Pollution Vehicle Sticker"

Starting April 1st, "Low Emission Vehicle" stickers created by Suzuki have been attached to low emission vehicles in our fleet of business vehicles (company vehicles used for business activities by our employees). It is hoped that the stickers will educate our employees, provide easier management of low emission vehicles, and provide public relations to the local communities.

The fleet will be expanded with more such vehicles in the future.

Providing Environmental Information

To provide the public with environmental related information, we have used news releases, our corporate web site, Annual Reports (in English), Company Guide, new product data, etc., in addition to this report. Whenever necessary, we prepare and distribute information on environmental activities or countermeasures to our related companies to promote and advance environmental activities.

Corporate Web Site

Annual Report

Company Guide

This section introduces environmental events (low pollution vehicle exhibitions or community environmental cleanup events) that we participate in, and the results of the Suzuki Foundation in the fostering human resources and new technology development.

Low Pollution Vehicle Exhibitions, etc.

Suzuki participated in low pollution vehicle exhibitions sponsored by the government, local public bodies, etc. We hope that we can contribute to the promotion of low pollution vehicles by increasing the public's awareness of our low pollution vehicles.

The results of exhibitions in 2002 are as follows.

Event Name	Description	Sponsor	Location	Date
Eco Car World 2002	Exhibit natural gas and electric pow- ered vehicles	Tokyo Metropolitan Government and the Environmental Agency	Yoyogi Park	2002, 6/1 - 6/2
Katsushika Environment • Green Fair	Exhibit natural gas vehicles	Katsushika District	Techno Plaza Katsushika	6/8
Low Pollution Vehicle Fair Nagoya 2002	Exhibit natural gas vehicles	Low Pollution Vehicle Fair Nagoya Organizing Committee	Tsurumai Park	9/21 - 9/22
Shizuoka Environment, Welfare, and Technology Exhibition	Exhibit natural gas and electric pow- ered vehicles	Shizuoka Prefecture, Shizuoka City	Twin Messe Shizuoka	9/27 - 9/29
Low Pollution Vehicle Fair in Osaka	Exhibit natural gas vehicles	OITFC, RITE, JSIM	INTECS Osaka	10/16 - 10/19
Odawara city Low Pollution Vehicle	Exhibit natural gas vehicles	Odawara City	Dyna City West	10/20
Test Drive			Hakone-en Garden	11/2
Natural Gas Vehicle Exhibition 2002	Exhibit and test drive of natural gas vehicles	Japan Gas Association	Shinjuku Park Tower	11/13 – 11/15
Osaka Low Pollution Vehicle Fair	Exhibit natural gas vehicles	Osaka-fu	Osaka Business Park	11/22 – 11/23
Nagoya International Meeting on Transportation and the Environment	Exhibit hybrid vehicles	OECD, Environmental Agency, Ministry of Transportation	Nagoya International Con- ference Hall	2003, 3/23 – 3/25

Eco Car Word 2002

Shizuoka Environment, Welfare, Technology Exhibition

Natural Gas Vehicles Exhibition 2002

Nagoya International Meeting on Transportation and the Environment

Community Environmental Cleanup

To contribute to our community and increase environmental awareness, our employees voluntarily participate in community cleanups.

Every year we participate in the "Island Clean Campaign" sponsored by RENGO, and the "Archipelago Cleanup Operation" sponsored by Small Kindness Movement Shizuoka, contributing to the cleanup of local environments through beach cleanups, riverside cleanups, park cleanups, etc.

Event Name	Description	Sponsor	Location	Date	Number of	of Participants
	Riverside Cleanup	RENGO SHIZUOKA, Chuuen Regional Council	Iwata Town Fukude Cho Riverbed	11/23	Total: 107	Employees: 7
	Riverside Cleanup	RENGO SHIZUOKA, Shimada/Haibara Regional Council	Oi River	10/27	Total: 200	Employees: 5
Island Clean Campaign	Riverside Cleanup	RENGO SHIZUOKA, Hamamatsu Regional Council	Tenryu River	10/26	Total: 300	Employees: 50
	Weed Pulling	RENGO SHIZUOKA	Fuji City Rengo No Mori	7/27	Total: 140	Employees: 1
	Beach Cleanup	RENGO SHIZUOKA, Kosai Regional Council	Shirasuka Beach	6/2	Total: 200	Employees: 30
	Kosai City Cleanup	RENGO SHIZUOKA, Kosai Regional Council	LocationDateNumber oIncilIwata Town Fukude Cho Riverbed11/23Total: 107Oi River10/27Total: 200Tenryu River10/26Total: 300Fuji City Rengo No Mori7/27Total: 140CilShirasuka Beach6/2Total: 200CilVicinity of Kosai City Hall9/4Total: 300CilInasa Town Kannon Mountain2/17Total: 500Nakatajima Kite Festival Park & Beach5/12Total: 890Nakatajima Kite Festival Park & Beach8/31Total: 370Tenryu River Green Park11/19Total: 420	Employees: 50		
Forest Experi- ence (Green Pal)	Reforestation	RENGO SHIZUOKA, Seibu Regional Council	Inasa Town Kannon Mountain	2/17	Total: 500	Employees: 27
Archipelago	Beach Cleanup	"Cmall Kindnesse" Mayamant, Shiruaka	Nakatajima Kite Festival Park & Beach	5/12	Total: 890	Employees: 24
Cleanup	Beach Cleanup	Prefecture Main Office	Nakatajima Kite Festival Park & Beach	8/31	Total: 370	Employees: 39
Operation	Park Cleanup		Tenryu River Green Park	11/19	Total: 420	Employees: 33

Archipelago Cleanup Operation (Nakatajima "Kite Festival" Park and Beach)

Island Clean Campaign (Tenryu River Riverside)

The SUZUKI Foundation Contributes to Research

The SUZUKI Foundation was established to support human resources and research in the development of new technologies.

No.	Research Themes	University/Research Institute	Fiscal Year
1	Develop a passive type atmospheric particle sampler utilizing microscopic observations	Tokyo University	
2	Research and develop basic technology for a portable fuel cell utilizing organic hydride	Hokaido University Catalytic Chemistry Research Center	2002
3	Develop a compact direct methanol type fuel cell and apply it to motorcycle use	Musashi Institute of Technology	2002
4	Utilize a barium catalyst to remove through direct decomposition, nitrogen oxide from vehicle exhaust emissions	Kyoto University	
5	Create a thin, highly efficient proton conducing oxide filter and apply its technology to fuel cell electrolytes	Chiba Institute of Technology	

TOPICS

< Environmental Study for Kids >

 Suzuki's "Kid's Question Box" is featured on our web site (Reported January 15th, 2003)

Suzuki's corporate web site features a "Suzuki Kid's Question Box" which is aimed at youths from mid-grade school level and above. Using a Question & Answer format along with illustrations or photos, the page offers information covering 91 items such as Manufacturing, Development, Environment, Sales, Overseas, etc. so that young people can gain a better understanding of our manufacturing activities. (Environmentally related examples: What is a hybrid vehicle? What is Suzuki doing in regard to the environment?)

 117,000 Children Invited to the Pacific Flora 2004 (Reported October 17th, 2002)

Admission tickets to the Shizuoka International Garden and Horticulture Exhibition "Pacific Flora 2004" (held from 4/8 through 10/11, 2004) are presented to grade school, junior high school, and high school students who attend schools in the 9 cities and towns in which Suzuki or its subsidiary companies have factories. The cities and towns in Shizuoka prefecture are; Hamamatsu city, Kosai city, Iwata city, Osuka town, Sagara town, Ryuyo town, Inasa town, Tenryu city, and in Aichi prefecture; Toyokawa city. The total number of advance tickets is about 117,000 with a value of approximately ¥90,000,000.

Environmental Data

This section contains data and values resulting from business activities in Fiscal 2002 (April 2002-March 2003).

Vehicles that Meet Law on Promoting Green Purchasing

The Law on Promoting Green Purchasing specifies low pollution vehicles*1 as; alternate fuel vehicles*2 and gasoline vehicles with low exhaust emissions (A, AA, AA) and excellent fuel economy*3. Among the vehicles sold in 2002 we introduced automobiles that come under this category.

*1 From 2003 only vehicles with a 🕸 🕸 rating in exhaust emission performance are eligible. Vehicles with a 🛱 or 🕸 rating will not be eligible. (No change in fuel economy performance.)

*2 Fuel cell vehicles, hybrid vehicles, natural gas vehicles, electric vehicles.

*3 Meets 2010 fuel economy standards.

< Mini Passenger Cars >

Model	Vehicle Type	Engine	Displace- ment (L)	Drive System	Trans- mission	Low Emission Level (See note)	Regulations Adopted	Comment	Model Name (Specification)
	LA-HA23S	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	3 Door	N-1
	TA-HA23S	K6A	0.658	2WD	5MT	Good	2010 Fuel Economy Standard	5 Door	Epo Lean Burn Engine
Alto	UA-HA23S	K6A	0.658	2WD	4AT	Ultra	2010 Fuel Economy Standard	5 Door	Еро
	LA-HA23S	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door	N-1, Lb
	LA-HA23S	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door	N-1, Lb
Alto Lapin	UA-HE21S	K6A	0.658	2WD	4AT	Ultra	2010 Fuel Economy Standard	5 Door	G, X, X2, Mode
	UA-HN22S	K6A	0.658	2WD	5MT	Ultra	2010 Fuel Economy Standard	5 Door	E, E (A Package), E (B Package)
	UA-HN22S	K6A	0.658	2WD	4AT	Ultra	2010 Fuel Economy Standard	5 Door	E, E (A Package), E (B Package)
Koi	TA-HN22S	K6A	0.658	2WD	5MT	Good	2010 Fuel Economy Standard	5 Door	N-1
nei	TA-HN22S	K6A	0.658	4WD	5MT	Good	2010 Fuel Economy Standard	5 Door	N-1
	TA-HN22S	K6A	0.658	2WD	5MT	Good	2010 Fuel Economy Standard	5 Door	Works
	TA-HN22S	K6A	0.658	4WD	5MT	Good	2010 Fuel Economy Standard	5 Door	Works
	UA-MC22S	K6A	0.658	2WD	5MT	Ultra	2010 Fuel Economy Standard	5 Door	N-1
Wagon R	UA-MC22S	K6A	0.658	2WD	4AT	Ultra	2010 Fuel Economy Standard	5 Door	N-1, FM Aero
	LA-MC22S	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door	N-1
MR Wagon	UA-MF21S	K6A	0.658	2WD	4AT	Ultra	2010 Fuel Economy Standard	5 Door	E, N-1, N-1 Aero, X, X Navigation Package
Twin	UA-EC22S	K6A	0.658	2WD	5MT	Ultra	2010 Fuel Economy Standard	3 Door	Gasoline A
1 44111	UA-EC22S	K6A	0.658	2WD	3AT	Ultra	2010 Fuel Economy Standard	3 Door	Gasoline B

< Mini Commercial Vehicles >

Model	Vehicle Type	Engine	Displace- ment (L)	Drive System	Trans- mission	Low Emission Level (See note)	Regulations Adopted	Comment	Model Name (Specification)
	LE-HA23V	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	3 Door	Vs
Alto	LE-HA23V	K6A	0.658	2WD	3AT	Excellent	2010 Fuel Economy Standard	3 Door	Vs
Alto	LE-HA23V	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	3 Door	Vs
	UE-HA23V	K6A	0.658	2WD	4AT	Ultra	2010 Fuel Economy Standard	3 Door	VI
	LE-DA62V	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door	GA, PA, PC, JOIN
	LE-DA62V	K6A	0.658	2WD	3AT	Excellent	2010 Fuel Economy Standard	5 Door	GA, PA, PC, JOIN
	LE-DA62V	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door	GA, PA, PC, JOIN
Every	LE-DA62V	K6A	0.658	4WD	3AT	Excellent	2010 Fuel Economy Standard	5 Door	PA, PC, JOIN
Lvery	TE-DA62V	K6A	0.658	2WD	5MT	Good	2010 Fuel Economy Standard	5 Door	JOIN Turbo DX-II
	TE-DA62V	K6A	0.658	2WD	4AT	Good	2010 Fuel Economy Standard	5 Door	JOIN Turbo DX-II
	TE-DA62V	K6A	0.658	4WD	5MT	Good	2010 Fuel Economy Standard	5 Door	JOIN Turbo DX-II
	TE-DA62V	K6A	0.658	4WD	4AT	Good	2010 Fuel Economy Standard	5 Door	JOIN Turbo DX-II
	LE-DA63T	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	2 Door	KU, KC
Corry	LE-DA63T	K6A	0.658	2WD	3AT	Excellent	2010 Fuel Economy Standard	2 Door	KU, KC
Carry	LE-DA63T	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	2 Door	KC
	LE-DA63T	K6A	0.658	4WD	3AT	Excellent	2010 Fuel Economy Standard	2 Door	KC

< Passenger Cars >

Model	Vehicle Type	Engine	Displace- ment (L)	Drive System	Trans- mission	Low Emission Level (See note)	Regulations Adopted Commer		Model Name (Specification)
Aerio	LA-RB21S	M15A	1.49	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door	XR
	LA-RB21S	M15A	1.49	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door	XR
	LA-RB21S	M15A	1.49	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door	XR
	LA-RA21S	M15A	1.49	2WD	5MT	Excellent	2010 Fuel Economy Standard	4 Door	X
Aerio Sedan	LA-RA21S	M15A	1.49	2WD	4AT	Excellent	2010 Fuel Economy Standard	4 Door	X
	LA-RA21S	M15A	1.49	4WD	5MT	Excellent	2010 Fuel Economy Standard	4 Door	X
Curiff	LA-HT51S	M13A	1.328	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door	SE–Z, SF
Switt	LA-HT51S	M13A	1.328	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door	SE–Z, SF
Wagon R Solio	LA-MA34S	M13A	1.328	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door	1.3E, 1.3WELL, 1.3WELL S, 1.3SWT

< Low Pollution Vehicles >

Model	Vehicle Type	Engine	Displace- ment (L)	Drive System	Transmis- sion	Standards Judged By	Comment	Model Name (Specification)
Every	LE-DA62V (improved)	MEV40K	-	2WD	AT	Low Pollution Vehicles	Electric Vehicle	
Wagon R	LA-MC22S (improved)	K6A (improved)	0.658	2WD	AT	Low Pollution Vehicles	Natural Gas Vehicle	
Every	LE-DA62V (improved)	K6A (improved)	0.658	2WD	MT, AT	Low Pollution Vehicles	Natural Gas Vehicle	
Twin	UA-EC22S (improved)	K6A, MS05PA	0.658	2WD	AT	Low Pollution Vehicles	Hybrid Vehicle	Engine + Motor

(Note) Exhaust Emission Levels

A 25% reduction compared to 2000 standards. Good: Excellent: A 50% reduction compared to 2000 standards. Ultra: A 75% reduction compared to 2000 standards.

© Standards

Ministry of the Environment: Green Acquisition Law Standard

The Number of Low Pollution Vehicles Shipped

Suzuki's low pollution vehicles are developed utilizing advanced environmental technologies. In fiscal 2002, we contributed to environmental conservation by shipping about 430,000* low pollution vehicles.

* OEM (sales of goods manufactured for other brands) not included.

< Shipping Results from 2002 >	* OEM (sales of goods manufactured for other brands) not included.	- denotes that there are no equivalent models.
--------------------------------	--	--

		Autom	obiles	Tru	Total		
		Standard/Small	Mini Vehicles	Standard/Small	Mini Vehicles	Total	
	Electric Vehicles	—	—	—	3	3	
Low Pollution Vehicles	Hybrid Vehicle	0	0	—	—	0	
	Natural Gas Vehicles	—	30	—	89	119	
Low Fuel Economy and	***	0	224,318	0	467	224,785	
Low Exhaust Emission Certified Vehicles*	**	19,399	22,387	0	151,328	193,114	
	☆	0	5,062	0	4,021	9,083	
Total		19,399	251,797	0	155,908	427,104	

* These vehicles have achieved early conformity to fuel economy standards based on the law concerning the rational use of energy, and are certified as low
exhaust emission gas vehicles based on the implementation of certification for low exhaust emission gas vehicles.

Vehicles with low exhaust gas certification

☆☆☆ (Ultra-Low Emissions): A 75% reduction compared to 2000 standards.

 \Rightarrow (Excellent-Low Emissions) : A 50% reduction compared to 2000 standards.

☆ (Good-Low Emissions) : A 25% reduction compared to 2000 standards.

A List of Low Exhaust Emission Vehicles that were Delivered to the Market

We contribute to improving air quality by developing consumer vehicles with reduced exhaust emissions. The results of our efforts in 2002 are as follows.

In fiscal 2002, new models featuring improved exhaust gas performance were introduced to the market.

	Good-Low Emission Gas Vehicle	Excellent-Low Emission Gas Vehicle	Ultra-Low Emission Gas Vehicle
Alto			1 Туре
MR Wagon	1 Туре	1 Туре	1 Туре
Wagon R	1 Туре	1 Туре	1 Туре
Alto Lapin	1 Туре		
Kei	1 Туре		1 Туре
Twin			2 Types
Swift		1 Туре	
Wagon R Solio		1 Туре	
Cruze		1 Туре	
Aerio		1 Туре	
Aerio Sedan		1 Туре	
Carry		1 Type	
Alto			1 Type
Total	4 Types	8 Types	7 Types

Environmental Data for New Products

The following pages contain environmental information on new products introduced in 2002. The latest vehicle information is available to the public on our web site.

Automobiles

< Mini Passenger Cars >

		Vehicle N	lame		Alto			MR Wagon		Wagon R			
Date	Sales	Began			2002.4.10		2002	.4.25	2002.6.11		2002.9	.3	
	Vehic	cle Type			UA-HA23S	UA	-MF21S	LA-MF21S	TA-MF21S	UA-MC22S	LA-MC2	2S	TA-MC22S
		Model			K6A		Ke	5A	K6A		K6A		
ű		Displacement (L	_)		0.658	0.658 0.658 0.658 0.658							
ecificati	Engine	Туре		In-Line 3-Cylinder DOHC12-Valve VVT		In-Line 3-Cylinder In-Line 3-Cylinder DOHC12-Valve DOHC12-Valve VVT Intercooler Turbo		In-Line 3-Cylinder DOHC12-Valve Intercooler Turbo	In-Line 3 DOHC V	In-Line 3-Cylinder DOHC12-Valve VVT		In-Line 3-Cylinder DOHC12-Valve Intercooler Turbo	
sp	-	Fuel Type							Unleaded Regular Gasoli	10			
		Fuel System						Ele	ectronic Fuel Injection Equi	oment			
		Drive System			2WD		2WD	4WD	2WD/4WD	2WD	4WD		2WD/4WD
Dr	ive			MT	5MT		_	_	_	5MT	5MT		_
Ira	ain	Transmission		AT	4AT		4AT	4AT	4AT	4AT	4AT		4AT
				MT	690		_	_	_	810	860		_
Weig	ht (kg)		AT	710		840	880	860 - 900	820	870		850 - 900
Maxi	mum l	Load Capacity (kg	a)		_		_	_	_	_			_
	ģ	*10 • 15 Mode E	امر	MT	24.0		_	_	_	22.5	19.4		_
	sun	Economy (km/l)		AT	20.0		18.4	16.8	16.4 - 17.4	19.8	16.8		16.8
	S R	CO ₂ Emissions	(10 • 15 Mod	e) (a/km)	98 - 118		128	140	136 - 144	105 - 119	122 - 1	40	140
	tio	2010 Fuel Econo	my Standard	Achieved	Achieved	Ac	chieved			Achieved	Achieve	ed*	
lation	<u> </u>	Regulations Ad	opted		2000		2000	2000	2000	2000	2000		2000
	su	G Certification	Good-Low Exhaust En	nission					0				0
	nissio	Level of Low Emission	Excellent-L Exhaust En	.ow nission				O			0		
Inforn	iust Ei	Vehicles	Ultra-Low Exhaust En	nission	\diamond		\diamond			\diamond			
tal	xha	10 • 15 Mode	С	0	0.67		0.67	0.67	0.67	0.67	0.67		0.67
nen	ш	Regulation	Н	С	0.02		0.02	0.04	0.06	0.02	0.04		0.06
un		Figures (g/km)	NO	Эx	0.02		0.02	0.04	0.06	0.02	0.04		0.06
∠i.	e	Regulations Ad	opted		1998			1998			1998		
山	Nois	Acceleration No Figures (dB(A))	ise Regulati	on	76			76			76		
	Amo	unt of Refrigeran	t Used (g)		500			350			500		
	Recy	cle Related			Battery Tray, Tank Lower Cover, Dash Silencer			Battery Tray, Under Seat Tray			Battery Tray, Under Seat Box, Dash Silencer		
	Amo (Achi	unt of Lead Used ieved 1/3 compar	ed to 1996)		Achieved			Achieved			Achiev	ed	
		Vehicle N	lame		Alto Lapin			Kei		Twir	า		Twin Hybrid
Date	Sales	Began			2002.10.17			2002.1	.12	2003.1.22			
	Vehio	сіе Туре			TA-HE21S		UA·	-HN22S	TA-HN22S	UA-EC2	22S	UA-E	EC22S (improved)
s		Model			K6A			K6A			K	6A	
tion		Displacement (L	_)		0.658			0.65	3		0.6	58	
oecifica	Engine	Туре			In-Line 3-Cylinde DOHC12-Valve Intercooler Turbo	er D	In-Line DOH	3-Cylinder C12-Valve VVT	In-Line 3-Cylinder DOHC12-Valve Intercooler Turbo	In-Line 3-C DOHC12-	ylinder Valve	lı DOł	n-Line 3-Cylinder HC12-Valve + Motor
S		Fuel Type							Unleaded Regular Gasoli	ne			
		Fuel System						Ele	ectronic Fuel Injection Equi	oment			
		Drive System			2WD/4WD		:	2WD	2WD/4WD	2WD)		2WD
Dr	ive			MT	_			5MT	5MT	5MT			_

		Drive System			2WD/4WD	2WD	2WD/4WD	2WD	2WD
Dri	ve	Trementingian		MT	_	5MT	5MT	5MT	_
	AT		4AT	4AT	4AT	3AT	4AT		
14/	- 4 (1			MT	—	760	780 - 820	560	—
weig	nt (Kg)		AT	800 - 840	770	790 - 830	600	700 (730)
Maxir	num l	Load Capacity (k	g)		_	_	_	_	
	-du	*10 • 15 Mode F	uel	MT	—	22.5	19.6	26.0	—
	Rate	Economy (km/l)		AT	16.8 – 17.4	19.8	16.6 - 18.2	22.0	34.0 (32.0)
	o c	CO ₂ Emissions	(10 • 15 Mod	e) (g/km)	136 – 140	105 – 119	120 – 142	91 - 107	69 - 74
	Fue	2010 Fuel Econo	my Standard	Achieved		Achieved	Achieved*	Achieved	Achieved
		Regulations Ad	opted		2000	2000	2000	20	00
suc	suo	Certification Level of Low Emission Vehicles	Good-Low Exhaust En	nission	0		0		
natior	missi		Excellent-L Exhaust En	ow nission					
Inforr	ust E		Ultra-Low Exhaust En	nission		\diamond		<	>
Ital	xha	10 • 15 Mode	C	0	0.67	0.67	0.67	0.	67
ner	ш	Regulation	H	С	0.06	0.02	0.06	0.	02
no		Figures (g/km)	NC	Эx	0.06	0.02	0.06	0.	02
vir	e	Regulations Ad	opted		1998	19	998	19	98
Ē	Nois	Acceleration No Figures (dB(A))	oise Regulati	on	76	7	76	7	6
	Amo	unt of Refrigeran	t Used (g)		500	5	00	50	30
	Recycle Related			Battery Tray, Tank Lower Cover, Dash Silencer	Battery Tray, Under Seat Box, Dash Silencer		Dash Silencer		
	Amo (Achi	unt of Lead Used	ed to 1996)		Achieved	Achi	ieved	Achi	eved

* This mark indicates that not all vehicles are in compliance.

< Passenger Cars >

		Vehicle N	ame		Swift	Wagon R Solio	Cruze	Aerio	Aerio Sedan
Date	Sales	Began			2002.6.6	2002.6.14	2002.12.16	2003.1.14	2003.1.14
	Vehi	cle Type			LA-HT51S	LA-MA34S	LA-HR81S	LA-RD51S	LA-RC51S
		Model			M13A	M13A	M15A	M18A	M18A
ions		Displacement (L)			1.328	1.328	1.490	1.796	1.796
pecificat	Engine	р Туре			In-Line 4-Cylinder DOHC 16-Vale VVT	In-Line 4-Cylinder DOHC 16-Vale VVT	In-Line 4-Cylinder DOHC 16-Vale	In-Line 4-Cylinder DOHC 16-Vale VVT	In-Line 4-Cylinder DOHC 16-Vale VVT
S		Fuel Type					Unleaded Regular Gasoline		
		Fuel System				E	Electronic Fuel Injection Equipmen	t	
		Drive System			2WD/4WD	2WD/4WD	2WD/4WD	2WD/4WD	2WD/4WD
Tra	ive ain	Transmission		MT	5MT	—	_	—	—
		mansmission		AT	4AT	4AT	4AT	4AT	4AT
Moight (kg)		MT	890 - 930	—	_	—	—		
AT			AT	920 - 960	970 - 1010	940 - 990	1,190 - 1,250	1,170 – 1,230	
Maxi	mum l	Load Capacity (kg	3)		-	-	—	-	-
	ė.	*10 • 15 Mode Fi	lei	MT	18.0 - 18.6	-	_	-	-
	Rate	Economy (km/l)		AT	16.4 – 17.4	16.4 - 18.0	16.2 - 17.0	12.8 - 14.0	12.8 - 14.0
	al Co	CO ₂ Emissions	(10 • 15 Mode	e) (g/km)	127 – 144	131 – 144	139 – 146	169 – 184	169 – 184
	'nĽ	2010 Fuel Econo	my Standard	Achieved	Achieved*	Achieved*			
		Regulations Ad	opted		2000	2000	2000	2000	2000
	suc	Certification Good-Low Exhaust Emission							
nation	missio	Level of Low Emission	.ow Excellent-Low Exhaust Emis		Ø	Ø	Ø	O	O
Infor	aust E	venicies	Ultra-Low Exhaust Em	nission					
ntal	Exp	10 • 15 Mode	C	0	0.67	0.67	0.67	0.67	0.67
me	-	Regulation	H	С	0.04	0.04	0.04	0.04	0.04
iror		Figures (g/km)	NC	Dx	0.04	0.04	0.04	0.04	0.04
Env	e	Regulations Ad	opted		1998	1998	1998	1998	1998
	Nois	Acceleration No Figures (dB(A))	ise Regulation	on	76	76	76	76	76
	Amo	unt of Refrigeran	t Used (g)		360	480	380	500	500
	Recy	cle Related			Battery Tray, Under Seat Box, Dash Silencer	Battery Tray, Under Seat Box, Dash Silencer	Battery Tray, Under Seat Box, Dash Silencer	Foot Rest Pedal, Battery Tray, Dash Silencer	Foot Rest Pedal, Battery Tray, Dash Silencer
	Amo (Ach	unt of Lead Used ieved 1/3 compar	ed to 1996)		Achieved	Achieved	Achieved	Achieved	Achieved

* This mark indicates that not all vehicles are in compliance.

< Mini Truck >

	Vehicle Name		Carry	Alto			
Date	Sales	Began			2002.5.16	2002.4.10	
	Vehio	cle Туре			LE-DA63T	UE-HA23V	
IS		Model			K6A	K6A	
tio	Displacement (L)			0.658	0.658		
ecifica	Engine	Туре			In-Line 3-Cylinder DOHC12-Valve	In-Line 3-Cylinder DOHC12-Valve VVT	
sp	-	Fuel Type			Unleaded Reg	ular Gasoline	
		Fuel System			Electronic Fuel Inj	ection Equipment	
_		Drive System			2WD/4WD	2WD	
Dr Tra	ive ain	Transmission		MT	5MT	5MT	
		Transmission		AT	3AT	4AT	
14/01:00	h4 (lam)	``````````````````````````````````````		MT	1,160 – 1,220	630	
weig	nt (Kg)		AT	1,170 – 1,230	650	
Maxi	Maximum Load Capacity (kg)			350	200		
ė		*10 • 15 Mode Fu	ıel	MT	16.8 – 17.2	24.0	
	nsur Rate	문 Economy (km/l) AT		AT	15.8	20.5	
	ion Co	CO ₂ Emissions	(10 • 15 Mod	e) (g/km)	137 – 149	98 - 118	
	Fue	2010 Fuel Economy Standard Achieved			Achieved	Achieved	
		Regulations Add	opted		2002	2002	
	su	Certification	Good-Low Exhaust Emission				
nation	missio	Level of Low Emission	Excellent-Low Exhaust Emission		Ø		
Inforn	aust E	Vehicles	Ultra-Low Exhaust Er	nission		\diamond	
ntal	Xha	10 • 15 Mode	С	0	3.30	3.30	
me	-	Regulation	н	С	0.07	0.03	
iron		Figures (g/km)	N	Оx	0.07	0.03	
2	e	Regulations Add	opted		2000	1999	
	Nois	Acceleration No Figures (dB(A))	ise Regulati	ion	76	76	
	Amo	unt of Refrigeran	t Used (g)		530	500	
	Recy	cle Related			Battery Tray, Engine Under Cover, Radiator Under Cover	Battery Tray, Tank Lower Cover, Dash Silencer	
	Amo (Ach	unt of Lead Used ieved 1/3 compar	ed to 1996)		Achieved	Achieved	

* This mark indicates that not all vehicles are in compliance.

Motorcycles

< Motorcycles >

Vehicle Name		Sky Wave 650	Sky Wave 250	Sky Wave 400	SV400	Choinori	SV1000S	
Date Sales Beg	an		2002.6.1	2002.8.8	2002.9.20	2002.11.12	2003.2.11	2003.3.27
	Vehicle Type		BC-CP51A	BA-CJ43A	BC-CK43A	BC-VK53A	BA-CZ41A	BC-VT54A
	Engine Model		P509	J436	K429	K508	Z401	T508
Specifications	Туре		Water-Cooled 4-Stroke	Water-Cooled 4-Stroke	Water-Cooled 4-Stroke	Water-Cooled 4-Stroke	Air Cooled 4-Stroke	Water-Cooled 4-Stroke
opecifications	Displacement (cm3)		638	249	385	399	49	995
	Transmission		Variable Ratio V-Belt	Variable Ratio V-Belt	Variable Ratio V-Belt	6-Speed Return	Variable Ratio V-Belt	6-Speed Return
	Weight (kg)		270	189	199	188	43	217
Fuel	60km Constant Speed Test Value (km/l)		27.0	41.0	36.0	37.0	_	29.0
Rate	30km Constant Speed Test Value (km/l)		—	—	—	—	76.0	—
	Regulations Adopted	_	1999	1998	1999	1999	1998	1999
Exhaust	Motorcycle Mode	СО	13.0	13.0	13.0	13.0	13.0	13.0
Emissions	Regulation Figures	HC	2.00	2.00	2.00	2.00	2.00	2.00
	(g/km)	NOx	0.30	0.30	0.30	0.30	0.30	0.30
	Regulations Adopted		2001	1998	2001	1998	1998	2001
Noise	Acceleration Noise Regulation Figures (dB(A))		73	73	73	73	71	73

Marine and Power Products

	Category		Outboard Motor				
Model Nan	ne	DF4	DF5	DF6	K6A-B		
Date Sales	Began	January, 2002	January, 2002 *1	October, 2002	December, 2002		
	Туре	00401F	00501F	00601F	—		
0	Engine Type		4 Stroke Single Cylinder OH	1	4 Stroke 3-Cylinder DOHC		
cations	Displacement (cm ³)		138				
	Fuel System		Electronic Controlled Fuel Injection Equipment				
Weight (kg)	2	5 (Transom S), 26 (Transom	_)	—		
	Compliance with 2006 EPA Marine Engine Exhaust Emissions Regulations	0	0	0	Not Applicable		
	Compliance with 2006 Japan Boat Manufacturer's Association Voluntary Engine Exhaust Emissions Regulations	0	0	0	Not Applicable		
Exhaust	Compliance with 2004 CARB Marine Engine Exhaust Emissions Regulations	0	0	0	Not Applicable		
Emission	Compliance with 2010 EPA Snowmobile Exhaust Emis- sions Regulations Phase 2	Not Applicable	Not Applicable	Not Applicable	0		
	CO (g/kw-hr)	_	—	—	124 *3		
	HC (g/kw-hr)	_	_	_	7 *3		
	NOx (g/kw-hr)	_	—	—	_		
	HC+NOx (g/kw-hr)		_				
Fuel Economy	Fuel Consumption Rate at Maximum Output (g/kw-hr)	_	310 *2	_	387 *3		
Noise	Operator Noise (dBA)	—	79 *3	—	—		

*1 *2 *3 Only the DF5 is sold domestically. Date sales began: May 15, 2002. Data provided to the EPA, CARB, and Japan Boating Industry Association In-House Test Data

Plant Site Environmental Data

This section lists environmental data for each of our six domestic plants. While each plant complies with environmental regulations in accordance with laws, ordinances, and agreements, our corporate policy is to lower the ceiling to 70% on the strictest values and use these stricter settings as the company standard to reduce environmental impact even further and prevent the occurrence of environmental incidents.

< Notations >

- ① Water Quality (Notations and Proper Names (Units))
 - pH: Hydrogen-ion concentration (none), BOD: Biochemical oxygen demand (mg/l),
 - SS: Concentration of suspended solids in water (mg/l). All other items are referred to as mg/l.
- ② Air Quality (Notations and Proper Names (Units)) NOx: Nitrogen Oxide (ppm), SOx: Sulfur Oxide (K value), Particulate (g/Nm³), NOX: Nitrogen Oxide (ppm), SOX: Sulfur Oxide (K value), Particulate (g/Nm³),
 - Chlorine/Hydrogen chloride/Fluoride/Hydrogen Fluoride (mg/Nm3), Dioxin: ng-TEQ/Nm3
- ③ The strictest regulations out of the Water Pollution Control Law, Air Pollution Control Law, Prefectural Ordinances, and Pollution Control Agreement are used. (— indicates no regulation value)
- ④ There is no SOx measurement for the facilities that utilize sulferless LPG for fuel.

Suzuki's Domestic Plants

Takatsuka Plant

Tomoyuki Kume

[Location]

[Site Area (Building Area)] [Main Products] 300, Takatsuka-cho, Hamamatsu-shi, Shizuoka 205,000m² (125,000m²) Motorcycle Engine Assembly, Machine Processing 8,010 (Head Office + Takatsuka Plant)

<	Water	Pollution	Data	(Discharge)	>
---	-------	-----------	------	-------------	---

Items	Regulated Values	Results	Average	
рН	5.8 - 8.6	6.7 - 8.0	7.5	
BOD	20	2.5 or less	1.09	
SS	30	0.5 - 8.4	4.13	
Oil Content	5.0	0.4 - 2.9	0.79	
Lead	0.1	0.02 or less	0.003	
Hexavalent Chromium	0.1	0.005 or less	under 0.005	
Nitrogen	60	15.7 – 68.2*	35.2	
Phosphorus	8	0.06 - 0.21	0.11	

* The value of 60mg/l that is found in the Regulated Values column is the daily average value. The value of 68.2mg/l that is found in the Results column is a one-instance peak value.

< Air Pollution Data (Discharge) >

Substance	Facilities	Regulated Values	Results	Average
NOx	Small Boiler	_	100 – 110	105
SOx (K value)	Small Boiler	7.0	2.17 – 4.0	2.79
Particulates	Small Boiler	_	0.04 or less	0.02
Chlorine	Aluminum Melting Furnace	30	under 1	under 1
Hydrogen Chloride	Aluminum Melting Furnace	80	under 5	under 5
Fluoride/ Hydrogen Fluoride	Aluminum Melting Furnace	3	under 0.2	under 0.2

< PRTR Specified Substances (accumulated values based on the PRTR Law) >

Discharge Transfer Substance Amount Disposal by Recycling Products Substance Name Number Handled Incineration Air River Ground Landfill Sewage Waste 40 Ethyl Benzene 11.000 20 0 11.000 0 0 0 0 0 0 47.000 47.000 0 0 0 63 **Xvlene** 94 0 0 0 0 227 Toluene 84,000 570 0 0 0 0 0 0 83,000 0 231 Nickel 20.000 0 3.5 0 0 0 0 14.000 0 5.700 1.800 2.500 0 0 0 0 740 232 Nickel Compounds 0 0 0 Hydrogen Fluoride and its water-soluble 0 98 0 0 7.100 0 0 0 283 7.200 0 salts 7.0 0 0 299 Benzene 3,700 0 0 0 0 0 3,700

Since the total given in the Amount Handled column is rounded off to the nearest 100, this value may not agree with the values of the items listed to the right (Discharge, Transfer, Recycling, Disposal by Incineration, Products)

Unit: kg/Year

Iwata Plant

Plant Manager: Tsuneo Ohashi [Location] [Site Area (Building Area)] [Main Products] [Number of Employees]

< Air Pollution Data (Discharge) >

2500, Iwai, Iwata-shi, Shizuoka 298,000m2 (170,000m2) Complete Assembly of EVERY, CARRY, JIMNY, EXCEED 1,730

Unit: kg/Year

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	7.2 – 8.1	7.6
BOD	15	1.0 - 7.0	3.2
SS	30	0.3 - 5.4	2.5
Oil Content	3	0.1 – 1.2	0.36
Cadmium	0.1	0	0
Lead	0.1	under 0.01	0
Hexavalent Chromium	0.5	under 0.005	under 0.005
Nitrogen	60	6.8 - 21.6	13.7
Phosphorus	8	0.2 – 1.2	0.6

Substance	Facilities	Regulated Values	Results	Average
	Boiler	150	86 - 110	98
NOx	Small Boiler	_	120 – 130	125
	Hot Water Boiler, etc.	150	120	120
SOv (K value)	Boiler	17.5	2.34 - 2.63	2.49
SOX (K value)	Small Boiler	17.5	0.65 - 0.80	0.73
	Boiler	0.25, 0.3	under 0.01	under 0.01
Particulates	Small Boiler	—	under 0.01	under 0.01
	Hot Water Boiler, etc.	0.1	under 0.01	under 0.01

< PRTR Specified Substances (accumulated values based on the PRTR Law) >

Discharge Transfer Substance Amount Disposal by Substance Name Recycling Products Name Handled ' Landfill Waste Incineration Air River Ground Sewage 40 Ethyl Benzene 82,000 40,000 0 0 0 0 0 21,000 5,000 16,000 840,000 43 840.000 0 0 0 Ethylene Glycol 0 0 0 0 0 300,000 150,000 0 0 0 0 0 73,000 70,000 63 Xylene 9,900 224 1, 3, 5 Trimethyl Benzene 33,000 22,000 0 0 0 0 0 11,000 620 0 0 0 52,000 100,000 227 Toluene 280.000 110.000 0 0 0 8.800 232 Nickel Compounds 8,500 0 58 0 0 0 5,900 0 0 2,600 272 Bis (2-Ethylhexyl) Phthalate 49,000 0 0 0 0 0 1,500 0 0 47,000 5,800 299 Benzene 6,000 29 0 0 0 0 0 0 250 310 Formaldehyde 5,300 50 0 0 0 0 0 0 5,200 0 311 Manganese and its compounds 5,400 0 13 0 0 0 2,100 0 0 3,200

Since the total given in the Amount Handled column is rounded off to the nearest 100, this value may not agree with the values of the items listed to the right (Discharge, Transfer, Recycling, Disposal by Incineration, Products)

Kosai Plant

Plant Manager: Director Naoki Aizawa

[Location] [Site Area (Building Area)] [Main Products] 4520, Shirasuka, Kosai-shi, Shizuoka 1,102,000m² (410,000m²) Complete Assembly of ALTO, ALTO LAPIN, WAGON R, KEI, MR WAGON, CHEVROLET CRUZE, SWIFT, WAGON R SOLIO 2,620

/a

< Air Pollution Data (Discharged) >

[Number of Employees]

< Water Pollution Data (Discharge) > First Discharge (Plant #1, Plant #2)

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	7.0 – 8.7 *1	7.5
BOD	15	1.0 - 6.9	3.1
SS	15	0.8 - 4.4	2.4
Oil Content	2 (3 when raining)	1.4 or less	0.6
Cadmium	0.002	under 0.0005	under 0.0005
Lead	0.1	0.005 - 0.01	0.008
Hexavalent Chromium	0.1	under 0.05	under 0.005
Nitrogen	12	0 – 12.82 *2	3.13
Phosphorus	2	0.026 - 1.03	0.363
Zinc	1	0.05 - 0.8	0.12

*1 Alkali drainage occurred due to concrete construction (countermeasures already applied).

*2 The biological treatment tank's effectiveness decreases during long holidays (countermeasures already applied).

Second Discharge (KD Plant)

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	7.1 – 7.9	7.5
BOD	15	0.2 - 2.5	0.76
SS	15	5.0 or less	1.2
Oil Content	2 (3 when raining)	1.0 or less	0.2
Cadmium	0.002	under 0.0005	under 0.0005
Lead	0.1	0.005 - 0.011	0.007
Hexavalent Chromium	0.1	under 0.005	under 0.005
Nitrogen	12	0.15 – 5.85	2.29
Phosphorus	2	0.018 - 0.261	0.134
Zinc	1	0.03 - 0.55	0.16

Substance	Facilities	Regulated Values	Results	Average
	Small Boiler	150*	78 – 98	89
	Incinerator	200	100 – 120	110
	Gas Turbine 1	70	24 – 38	33
	Gas Turbine 2	70	30 – 44	36
NOx	Drying Oven	230	61 – 70	66
	Water Heater/ Cooler 1	150	61	61
	Water Heater/ Cooler 2	150	68	68
	Water Tube Boiler	150	98 – 100	99
	Small Boiler	7	0.09 - 0.34	0.22
	Incinerator	7	0.32 – 0.5	0.4
SOx (K value)	Gas Turbine 1	7	0.18	0.18
	Gas Turbine 2	7	0.16 – 0.25	0.21
	Drying Oven	7	0.14	0.14
	Small Boiler	0.1*	under 0.01	under 0.01
	Incinerator	0.15	under 0.01	under 0.01
	Gas Turbine 1	0.05	under 0.01	under 0.01
	Gas Turbine 2	0.05	under 0.01	under 0.01
Particulates	Drying Oven	0.2	under 0.01	under 0.01
	Water Heater/ Cooler 1	0.1	under 0.01	under 0.01
	Water Heater/ Cooler 2	0.1	under 0.01	under 0.01
	Water Tube Boiler	0.1	under 0.01	under 0.01
Hydrogen Chloride	Incinerator	150	60 - 70	63
Dioxin	Incinerator	80	0.092	0.092

* Agreement Value

< PRTR Specified Substances (accumulated values based on the PRTR Law) >

Unit: kg/Year (Dioxins: mg-TEQNm3)

Substance	Out of our Allower	Amount	Disch	narge		Tran	sfer		Describer	Disposal by	Desidents
Name	Substance Name	Handled *	Air	River	Ground	Landfill	Sewage	Waste	Recycling	Incineration	Products
30	polymer of 4,4'-isopropylidenediphenol and 1-chloro-2,3-epoxypropane (liquid); bisphenol A type epoxy resin (liquid)	19,000	0	0	0	0	0	0	5,100	0	14,000
40	Ethyl Benzene	400,000	240,000	0	0	0	0	0	120,000	20,000	28,000
43	Ethylene Glycol	1,000,000	0	0	0	0	0	0	0	0	1,000,000
63	Xylene	1,400,000	860,000	0	0	0	0	0	410,000	31,000	120,000
179	Dioxins	_	3.5	0.67	0	0	0	350	0	0	0
224	1, 3, 5 Trimethyl Benzene	30,000	18,000	0	0	0	0	0	9,500	2,700	0
227	Toluene	630,000	270,000	0	0	0	0	0	140,000	37,000	180,000
232	Nickel Compounds	7,100	0	180	0	0	0	0	4,800	0	2,100
272	Bis (2-Ethylhexyl) Phthalate	20,000	0	0	0	0	0	0	610	0	20,000
283	Hydrogen Fluoride and its water-soluble salts	22,000	0	1,000	0	0	0	0	19,000	0	0
299	Benzene	10,000	300	0	0	0	0	0	0	190	9,900
310	Formaldehyde	20,000	1,400	0	0	0	0	0	0	18,000	0
311	Manganese and its compounds	17,000	0	280	0	0	0	0	5,800	0	10,000

* Since the total given in the Amount Handled column is rounded off to the nearest 100, this value may not agree with the values of the items listed to the right (Discharge, Transfer, Recycling, Disposal by Incineration, Products)

• Toyokawa Plant

Plant Manager: Kunio Iwata

[Location]

[Site Area (Building Area)] [Main Products]

[Number of Employees]

1-2, Utari, Shiratori-cho, Toyokawa-shi, Aichi 185,000m² (70,000m²) Motorcycle Assembly, Outboard Motor Assembly, Knock Down Components 776

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	7.0 - 7.4	7.2
BOD	20	1.0 - 8.1	4.9
SS	20	5.0 – 12.5	6.9
Oil Content	5	0.5 – 1.7	0.8
Cadmium	0.1	under 0.0005	0
Lead	0.1	0.01 or less	0.005
Hexavalent Chromium	0.5	0.05	0.05
Nitrogen	15	6.61 – 7.32	6.97
Phosphorus	2	0.30 - 0.44	0.37

< Air Pollution Data (D)ischarge) >

Substance	Facilities	Regulated Values	Results	Average
Nov	Small Boiler	—	76 – 100	85
NOX	Oven	230	5	5
Porticulator	Small Boiler	—	0.01	0.01
Farticulates	Oven	0.2	0.01	0.01

< PRTR Specified Substances (accumulated values based on the PRTR Law) >

Unit: kg/Year

Substance	Substance Name	Amount	Disch	narge	Transfer				Deeveling	Disposal by	Draduata
Name	Substance Name	Handled *	Air	River	Ground	Landfill	Sewage	Waste	Recycling	Incineration	Products
40	Ethyl Benzene	28,000	16,000	0	0	0	0	0	8,000	2,300	2,200
43	Ethyl Glycol	240,000	0	0	0	0	0	0	0	0	240,000
63	Xylene	49,000	21,000	0	0	0	0	0	11,000	6,600	9,500
69	Chromium (VI) Compounds	1,600	0	1.6	0	0	0	11	0	0	1,600
227	Toluene	91,000	48,000	0	0	0	0	0	23,000	5,000	14,000
299	Benzene	1,000	23	0	0	0	0	0	0	210	780

* Since the total given in the Amount Handled column is rounded off to the nearest 100, this value may not agree with the values of the items listed to the right (Discharge, Transfer, Recycling, Disposal by Incineration, Products)

Osuka Plant

Plant Manager: Shousei Yamamoto

[Location]

[Site Area (Building Area)] [Main Products] [Number of Employees]

< Air Pollution Data (Discharged) >

6333, Nishiobuchi, Osuka-cho, Ogasa-gun, Shizuoka 149,000m² (47,000m²) Cast Parts Manufacturing 420

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	6.8 - 7.2	7.1
BOD	10	1.5 - 8.2	4.8
SS	10	0.6 - 6.1	2.3
Oil Content	2	0.2 – 1.5	0.8
Cadmium	0.1	0.004 - 0.005	0
Lead	0.1	0	0
Hexavalent Chromium	0.5	under 0.005	under 0.005
Nitrogen	60	1.52 – 5.26	3.49
Phosphorus	8	0.18 – 0.39	0.24

Substance	Facilities	Regulated Values	Results	Average
NOx	Gas Turbine	70	6 – 12	9.6
	Casting Furnace	0.1	under 0.01	under 0.01
	Gas Turbine	0.05	under 0.01	under 0.01
Particulates	Aluminum Melting Furnace	0.2	under 0.01	under 0.01
	Aluminum Heating Furnace	0.2	0.01 or less	under 0.01
Chloring	Aluminum Melting Furnace	10	under 1	under 1
Chionne	Aluminum Heating Furnace	10	under 1	under 1
Hydrogen	Aluminum Melting Furnace	20	under 5	under 5
Chloride	Aluminum Heating Furnace	20	under 5	under 5
Fluoride/	Aluminum Melting Furnace	1	under 0.2	under 0.2
Fluoride	Aluminum Heating Furnace	1	0.2 or less	under 0.2

< PRTR Specified Substances (accumulated values based on the PRTR Law) >

Unit: kg/Year

Substance	Substance Substance Name Amount		Substance Name Amount Discharge		Transfer				Recycling	Disposal by	Broducto
Name	Substance Name	Handled *	Air	River	Ground	Landfill	Sewage	Waste	Recycling	Incineration	
227	Toluene	5,200	1,400	0	0	0	0	650	0	3,100	0
311	Manganese and its Compounds	140,000	0	0	0	0	0	2,800	0	0	140,000

* Since the total given in the Amount Handled column is rounded off to the nearest 100, this value may not agree with the values of the items listed to the right (Discharge, Transfer, Recycling, Disposal by Incineration, Products)

• Sagara Plant

< Water Pollution Data (Discharge) >

Plant Manager: Tamao Momose

[Location]

[Site Area (Building Area)] [Main Products]

[Number of Employees]

1111, Shirai, Sagara-cho, Haibara-gun, Shizuoka 1,936,000m² (50,000m²) Automobile Engine Assembly, Casting and Machine Processing of Main Components for Engine 760

< Air Pollution Data (Discharged) >

Items	Regulated Values	Results	Average
pН	5.8 - 8.6	7.4 - 8.2	7.6
BOD	15	0.5 – 11.5	6.9
SS	30	0.6 - 7.2	2.1
Oil Content	3	0.29 - 1.64	0.85
Cadmium	0.05	under 0.0005	0
Lead	0.05	under 0.005	0
Hexavalent Chromium	0.25	under 0.005	under 0.005
Nitrogen	60	0.2 - 22.7	11.8
Phosphorus	8	0.1 – 1.0	0.26

Substance	Facilities	Regulated Values	Results	Average
NOv	Gas Turbine	70	21 – 29	25.3
NUX	Heat Treatment	180	37 – 44	40.5
	Gas Turbine	0.05	under 0.01	under 0.01
Particulates	Heat Treatment	0.2	0.01	0.01
i altioulates	Aluminum Melting Furnace	0.2	under 0.01	under 0.01
Chlorine	Aluminum Melting Furnace	10	under 1	under 1
Hydrogen Chloride	Aluminum Melting Furnace	20	under 5	under 5
Fluoride/Hydrogen Fluoride	Aluminum Melting Furnace	1	under 0.2	under 0.2

< PRTR Specified Substances (accumulated values based on the PRTR Law) >

[Sagara Plant]

Substance	Substance Name	Amount	Disch	narge		Tran	sfer		Populing	Disposal by	Draduata
Name	Substance Name	Handled *	Air	River	Ground	Landfill	Sewage	Waste	Recycling	Incineration	FIGURES
63	Xylene	18,000	180	0	0	0	0	0	0	18,000	0
227	Toluene	31,000	190	0	0	0	0	0	0	31,000	0
299	Benzene	3,100	10	0	0	0	0	0	0	3,100	0

[Ryuyo Proving Grounds]

Substance	Substance Name	Amount	Disch	narge		Trar	sfer		Deeveling	Disposal by	Draduate
Name	Substance Name	Handled *	Air	River	Ground	Landfill	Sewage	Waste	Recycling	Incineration	Products
63	Xylene	21,000	130	0	0	0	0	0	0	21,000	0
227	Toluene	43,000	210	0	0	0	0	0	0	42,000	0
299	Benzene	5,800	44	0	0	0	0	0	0	5,800	0

* Since the total given in the Amount Handled column is rounded off to the nearest 100, this value may not agree with the values of the items listed to the right (Discharge, Transfer, Recycling, Disposal by Incineration, Products)

Unit: kg/Year

Unit: kg/Year

Domestic Manufacturing Subsidiaries

• Suzuki Hamamatsu Auto Parts Mfg. Co., Ltd. -

[Location]	7-3 Minamihiramatsu, Ryuyo-cho, Iwata-gun, Shizuoka
[Site Area]	64,525m ²
[Main Products]	Casting motorcycle and automobile parts, machine processing
[Number of Employees]	284

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	6.8 - 7.8	7.3
BOD	20	2.2 – 17.0	6.9
SS	40	2.8 - 7.2	4.6
Nitrogen	60	5.1 – 15.0	9.1

< Air Pollution Data (Discharged) >

Substance	Facilities	Regulated Values	Results	Average
NOx	Aluminum Melting Furnace	—	0.016 - 0.019	0.0175
Particulates	Aluminum Melting Furnace	—	1 – 3	2
Chlorine	Aluminum Melting Furnace	30	0.79 – 0.87	0.83
Hydrogen Chloride	Aluminum Melting Furnace	80	2.43 - 2.69	2.56
Fluoride/ Hydrogen Fluoride	Aluminum Melting Furnace	3	0.66 - 0.73	0.695

• Suzuki Precision Industries Co., Ltd. -

[Location]	500 linoya, Inasa-cho
[Site Area]	80,000m ²
[Main Products]	Processing and asser
[Number of Employees]	656 (including tempor

500 linoya, Inasa-cho, Inasa-gun, Shizuoka
80,000m²
Processing and assembly of gears, etc., for motorcycles, automobiles, and outboards.
656 (including temporary staff and staff of companies located within the compound)

< Water Pollution Data (Discharge) >

Items Regulated Values Results Average pН 5.8 - 8.66.8 - 8.2 7.6 BOD 1 – 13 4.0 15 SS 20 2 – 3.4 2.2 **Oil Content** 5 0.5 - 1.4 0.7 4.4 - 24.0 120 14.2 Nitrogen Phosphorus 16 0.06 - 0.1 0.07 0.05 - 0.23 0.11 Zinc 1

< Air Po	llution Data (Discharged) >			
Sub- stance	Facilities	Regulated Values	Results	Average
Contin	Continuous Carburizing Furnace No.1	180	47 – 50	49.3
	Continuous Carburizing Furnace No.2	180	48 - 50	49.5
	Continuous Carburizing Furnace No.3	180	42 – 50	48.0
	Continuous Carburizing Furnace No.4	180	50 - 50	50.0
NOx	Atmosphere Controled Isothermal Annealing Furnace	180	48 – 50	49.3
	Atmosphere Controled Spheroidal Annealing Furnace	180	48 – 50	49.5
	Hot and Chilld Water Generator No.1	150	46 - 55	50.5
	Hot and Chilld Water Generator No.2	150	40 - 50	45.0
	Continuous Carburizing Furnace No.1	17.5	0.08 - 0.09	0.085
	Continuous Carburizing Furnace No.2	17.5	0.08 - 0.08	0.08
	Continuous Carburizing Furnace No.3	17.5	0.09 - 0.09	0.09
	Continuous Carburizing Furnace No.4	17.5	0.09 - 0.09	0.09
SOx (K value)	Atmosphere Controled Isothermal Annealing Furnace	17.5	0.08 - 0.08	0.08
	Atmosphere Controled Spheroidal Annealing Furnace	17.5	0.08 - 0.08	0.08
	Hot and Chilld Water Generator No.1	17.5	0.16 – 0.16	0.16
	Hot and Chilld Water Generator No.2	17.5	0.07 - 0.07	0.07
	Continuous Carburizing Furnace No.1	0.2	0.01 - 0.01	0.01
	Continuous Carburizing Furnace No.2	0.2	0.01 - 0.01	0.01
	Continuous Carburizing Furnace No.3	0.2	0.01 – 0.01	0.01
	Continuous Carburizing Furnace No.4	0.2	0.01 - 0.01	0.01
Particu- lates	Atmosphere Controled Isothermal Annealing Furnace	0.2	0.01 – 0.01	0.01
	Atmosphere Controled Spheroidal Annealing Furnace	0.2	0.01 – 0.01	0.01
	Hot and Chilld Water Generator No.1	0.1	0.01 - 0.01	0.01
	Hot and Chilld Water Generator No.2	0.1	0.01 - 0.01	0.01

• Suzuki Akita Auto Parts Mfg. Co., Ltd. -

[Location]
[Site Area]
[Main Products]
[Number of Employees]

192-1 lenohigashi, Hamaikawa, Ikawa-cho, Minamiakita-gun, Akita 1,995,000m² Parts for motorcycles and automobiles 449 (including outsource staff: 485)

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	6.0 - 8.5	7.0 - 7.4	7.2
BOD	20	2.7 – 17	7.2
SS	30	9 – 19	13.4
Oil Content	4	0.5 – 1.1	0.8
Lead	0.1	under 0.01	under 0.01
Hexavalent Chromium	0.2	under 0.05	under 0.05
Nitrogen	60	4.7 – 9	6.9
Phosphorus	8	0.08 - 0.8	0.5

< Air Pollution Data (Discharged) >

Substance	Facilities	Regulated Values	Results	Average
Nov	Small Boiler	180	18 – 58	43.3
NUX	Annealer	170	33 – 49	41.0
SOx (K value)	Small Boiler	87.6	under 0.01	under 0.01
	Annealer	87.6	0.04 - 0.05	0.045
Particulates	Small Boiler	0.3	under 0.01	under 0.01
	Annealer	0.2	under 0.01	under 0.01

Enshu Seiko Co., Ltd. -

[Location]	1246-1 Yamahigashi, Tenryu-shi, Shizuoka
[Site Area]	23,071m ²
[Main Products]	Manufacturing aluminum parts for motorcycles, automobiles, and outboards.
[Number of Employees]	256 (includes workers on loan, etc.)

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
pН	6.5 - 8.2	7.3 - 8.0	7.7
BOD	10	1.2 – 7.8	2.6
COD	35	1.9 - 8.6	3.8
SS	15	2 – 11	4.2
Oil Content	3	0.5 – 2.5	1.0
Hexavalent Chromium	0.5	0.05	0.05

• Snic Co., Ltd. -

[Location]

[Site Area]
[Main Products]
[Number of Employees]

1403 Higashihiramatsu, Ryuyo-cho, Iwata-gun, Shizuoka 20,873m² Manufacturing of seats 380

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	7.1 – 8.0	7.5
BOD	20	1 – 11	4.6
SS	40	2 – 12	5.7
Oil Content	5	0.5 – 1.2	0.8
Zinc	_	0.05 - 0.28	0.23

Suzuki Toyama Auto Parts Mfg. Co., Ltd. -

[Location]
[Site Area]
[Main Products]
[Number of Employees]

3200 Mizushima, Oyabe-shi, Toyama 75,000m² Manufacturing of parts and accessories for motorcycles and automobiles,

Manufacturing of parts and accessories for motorcycles and automobiles, assembling car audio and manufacturing aluminum die-cast 403

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	6 - 8	6.8 - 7.7	7.1
BOD	15	1.0 - 14.0	6.4
SS	15	1.6 – 14	5.2
Oil Content	5	0.5 - 1.5	1.0
Cadmium	0.02	under 0.005	under 0.005
Lead	0.02	0.002 - 0.0052	0.002
Hexavalent Chromium	0.1	under 0.05	under 0.05
Nitrogen	120	0.76 - 11.0	5.38
Phosphorus	16	0.11 – 2.20	0.98
Zinc	5	0.05 - 0.36	0.10

< Air Pollution Data (Discharged) >

Substance	Facilities	Regulated Values	Results	Average
	Small Boiler	150	80 – 91	84.3
NOx	Aluminum Melting Furnace	180	44 - 62	50.3
	Small Boiler	17.5	0.12 – 0.25	0.19
SOx (K value)	Aluminum Melting Furnace	17.5	0.00 - 0.09	0.038
	Small Boiler	0.30	0.009	0.009
Particulates	Aluminum Melting Furnace	0.20	0.009 - 0.018	0.013

Glossary

This section provides brief explanations for some of the technical words and abbreviations used in this report.

Please refer to this list when reading the report.

4dBa	A unit used to indicate sound level.	
Aluminum Die-cast	A manufacturing process in which molten aluminum is poured into a mold (aluminum casting).	
Catalyst	A device that removes some of the pollutants found in exhaust emissions.	
CVT (Electronically Controlled Continu- ously Variable Transmission)	An electronically controlled transmission that provides an infinite number of possible ratios.	
Cylinder Plating	Plating treatment applied to the cylinder inside the engine.	
Differential	A mechanism that allows the automobile's tires to rotate smoothly when cornering.	
Direct Injection	A fuel injection device that uses pressure to inject the fuel directly into the combustion chamber.	
EGR (Electronically Controlled Exhaust Gas Returner)	The EGR returns a portion of the exhaust gases back into the cylinder to control com- bustion. Electronic control is used to fine-tune the system.	
Exhaust Chamber	A chamber in the exhaust system designed to control the velocity of exhaust gases.	
Exhaust Manifold	The section of the exhaust system that attaches directly to the engine.	
Four-Stroke	A type of engine system in which the combustion cycle is completed in two complete revolution of the crankshaft. This engine is complicated and heavy however combustion is easier to control.	
FRP Boats (Recycling System for the Scrap- ping of FPR Boats)	A Ministry of Land, Infrastructure and Transportation project to recycle retired boats.	
Helical Gear	A gear that has its teeth cut at an angle to the gear's axis.	
Honeycomb Catalyst	A catalyst design with passageways shaped like a honeycomb through which the exhaust passes.	
Insulator	A device that absorbs vibrations.	
K-Engine	This is one of Suzuki's engine types. Other types include the M-Engine, etc.	
Linear Sensor (Linear Air-Fuel Ratio Sensor)	A highly accurate censor that measures exhaust gas to determine the air to fuel ratio.	
Lockup Clutch Slip Control	Depending upon driving conditions, this system controls the lockup clutch that is used to reduce transmission power loss while offering both economy and comfort.	
Low Viscosity Oil	An oil that has a low viscosity. It is useful in improving fuel economy.	
M18A Engine	An 1800cc engine type found in Suzuki's M type engine series.	
Mechanical Loss	Frictional resistance of moving parts caused by parts rubbing against each other.	
PUR	Polyurethane.	
Resonator	A resonating pipe that is mainly used to reduce noise.	
Secondary Air System	This system injects fresh air (oxygen) into the exhaust pipe and fully combust any re- maining fuel.	
Stepper Motor A type of motor that can control the rotation of its axis in multiple step		
Two-Stroke	A type of engine system where the combustion cycle is completed in one complete revolution of the crankshaft. This engine is simple and light in weight however, combustion is difficult to control.	
Urethane	A flexible, lightweight resin that is normally used as a foam padding.	
Variable Valve Timing (VVT)	Changes the opening and closing timing of the engine's valves in association with operating conditions.	
Wheel Balancing Weight	A weight attached to the wheel to control vibrations produced when the wheel and tire rotate.	

A History of Suzuki's Environmental Activities

Suzuki's environmental activities and major events are given in the chronological table below.

Suzuki's Environmental Chronology

1970	March	Ten CARRY Van electric vehicles are used at the Osaka World's Fair Exhibition.		
1971	July	The Environmental Protection Section is established within the Facilities Group of the Production Engineering Department as a section dedicated to environmental measures regarding production processes.		
1977	April	Suzuki Group Safety, Hygiene and Pollution Issues Council is established.		
1978	December	CARRY Van electric vehicle is developed.		
1981	December	Symposium on Energy Conservation is held, sponsored by the Machinery Industry Fostering and Promoting Foundation (the current Suzuki Foundation).		
1989	August	The Environmental Protection Council is established to strengthen the corporate-wide commitment to environmental issues, including products.		
1990	March	Freon collectors are installed at distributors nationwide. Collection and recycling of specified Freon used for car air conditioners begins.		
1991	December	Use of specified Freon for foaming (urethane form for seats, etc.) is abolished.		
	lanuary	The marking of resinous parts with their material name is begun.		
	January	The SCVT, continuously variable transmission is developed. (Mounted on a Cultus Convertible.)		
1992	October	A natural gas powered scooter is developed.		
	November	The Waste Countermeasure Group is established within the Production Engineering Department in order to reduce the volume of waste and to promote recycling.		
	December	The Alto electric vehicle and Every electric vehicle are introduced.		
	March	The "Environmental Protection Activities Plan" is established.		
1993	Мау	The Environmental Protection Section and the Waste Countermeasure Group are unified to form the Environmental Industrial Waste Group.		
	December	The replacement of car air conditioner refrigerant with a Freon substitute is completed.		
	June	The collection and recycling of waste bumpers from dealers is begun.		
1994	August	A facility is installed to recycle sludge contained in water discharge from the painting process, for reuse as asphalt sheet.		
		Recycling of waste sand at a casting plant as cement material is begun.		
1995	January	Waste incinerators are renewed and reduction in the volume of waste and use of discharged heat (steam) are expanded.		
	August	Co-generation facilities are introduced at the Kosai Plant to promote the reduction of energy.		
	April	The electric power-assist bicycle "LOVE" is introduced.		
1996	Мау	The "Environmental Protection Action Plan (Follow Up Version)" is established.		
	December	Co-generation facilities are introduced at the Sagara Plant.		
	March	A Wagon R mini vehicle which uses natural gas as fuel is developed.		
1007	Мау	Greatly improved Alto electric vehicles and Every electric vehicles are introduced.		
1997	October	Four-stroke outboard motor receives the "Technical Innovation Award" at the Chicago Boat Show.		
	December	Manual for the Disassembly of Vehicles is prepared and distributed to distributors.		
	February	Co-generation facilities are introduced at the Osuka Plant.		
	Pebruary	An Initiative Voluntary Action Plan for the Recycling of Used Automobiles is established.		
	April	Magyar Suzuki, a plant in Hungary, gains ISO14001 certification.		
1998	July	The Kosai Plant gains ISO14001 certification.		
		A mini vehicle equipped with a lean burn engine, the "LEV" is introduced.		
	October	For the second time in two years, a four-stroke outboard motor receives the "Technical Innovation Award" at the Chicago Boat Show.		
	December	An environmentally friendly pipe bending process is developed.		

	March	A new catalyst for motorcycles is developed. (Mounted on the "LET's II" scooter)
	Мау	A highly fuel efficient Alto, utilizing an "Sc Lean Burn" and CVT is introduced.
	June	A Wagon R vehicle powered by natural gas (CNG) is introduced.
	August	A new model Every electric vehicle is introduced.
	September	The Osuka Plant and Sagara Plant gain ISO14001 certification.
	October	An Alto equipped with the idling stop system is introduced.
1999		"Suzuki Pu-3 Commuter" receives special award for "The Best Concept Car" at the Tokyo Motor Show.
		Electric power-assist bicycle "LOVE" series undergoes full model change.
		Maruti Udyog Ltd. in India gains ISO14001 certification.
	November	Environmentally friendly table top industrial washers, the "SUC-300H, 600H" are introduced that cleanse using ultra sonic waves in place of organic solvents.
		The "Every natural gas (CNG) powered bicycle" is introduced.
	December	Four-stroke outboard motors that deliver quiet operation and low vibration, the "DF25" and "DF30" are introduced.
	January	Compact bumper crushing machine is developed.
	February	Suzuki Motor Espana, S.A. in Spain gains ISO14001 certification.
	June	Cami Automotive Inc. in Canada gains ISO14001 certification.
	July	Packaging for transport of Suzuki's three and four wheel, electric "Senior Car" receives the "Logistics Prize" at the 2000 Japan Packing Contest.
2000	October	Electric Assist bicycle "LOVE" series undergoes full model change.
	November	Packaging for transport of Suzuki's three and four wheel, electric "Senior Car" receives the "World Star" prize at the World Packaging Contest.
	December	Big four-stroke outboard motors that deliver quiet operation and low vibration, the "DF90" and "DF115" are introduced.
		The Toyokawa Plant gains ISO14001 certification.
	January	Lead is eliminated from the painting process in domestic motor cycle and automobile plants.
	March	The installation of bumper crushing machines in Japan is expanded.
2001	April	The Environment Planning Department is established to take responsibility for environmental prob- lems related to technology, products, manufacturing, distribution, etc.
2001	April	Replacing the Environmental Issues Council, the Environmental Committee is established to strengthen environmental efforts.
	August	The amount of reclaimed waste is greatly reduced and our Zero Level goal is achieved.
	October	Collaboration is begun with GM in fuel cell technology.
2002	January	Concept car "Covie" is awarded the "Environmental Award for the Concept Car of the Year" from Automotive News at the Detroit Motor Show.
	July	First practical utilization of a direct-injection turbo engine in a mini car.
		The mini car category's first hybrid vehicle (Twin) is introduced.
	January	The new concept "Choinori" scooter, which is designed to reduce its reliance on resources, is intro- duced.
2003	March	The Iwata Plant gains ISO14001 certification.
		The Takatsuka Plant gains ISO14001 certification.
		Wind turbine power generator is erected at the Inasa Training Center.

Company Overview

Global recognition of the **\$** trademark — with acceptance and reputation.

Starting business in 1909 as Suzuki Loom Works, the firm was incorporated in 1920. Since foundation in Hamamatsu, Japan, SUZUKI has steadily grown and expanded. After W.W.II, our motorized bike "Power free"* which earned a good reputation was followed by our 125cc motorcycle "Colleda", and later by the pioneering "Suzulight"* lightweight car that helped bring Japan's automotive revolution. Each of these was epoch-making in their own right as they were developed and manufactured by optimizing the most advanced technologies of that period. Today, constantly going forward to meet changing lifestyles, the SUZUKI name is seen on a full range of motorcycles, automobiles, outboard motors and related products such as generators and motorized wheelchairs, and even prefabricated storage sheds and houses. The strademark is recognized by people throughout the world as a brand of quality products that offer both reliability and originality. SUZUKI stands behind this global symbol with a sure determination to maintain this confidence in the future as well, never stopping in creating such advanced "value-packed products".

*This and following model names are for products marketed in Japan.

 Company Name SUZUKI MOTOR CORPORATION

◆ Date of Incorporation

March 1920 Incorporated as Suzuki Loom Manufacturing Co. June 1954 Name changed to Suzuki Motor Co., Ltd. October 1990 Name changed to Suzuki Motor Corporation

Capital

Yen 120,210 million (as of March 31, 2003)

- Chairman & CEO Osamu Suzuki
- President & COO Hiroshi Tsuda

♦ Head Office, Plants and Facilities

 Total Number of Employees 13,920 (as of April 1st, 2003)

Sales

Consolidated: Yen 2,015,300 millions Non-consolidated: Yen 1,411,400 millions (Fiscal 2002)

- Main Products
- Motorcycles, automobiles, outboard motors, generators, welders, general purpose engines, boats, motorized wheelchairs, electro-scooters, ultrasonic-related products (cleaner, cutter, etc)

Name	Address	Operations	
Head Office 200 Takatsuka cho Hamamatsu shi Shizuoka		Head office affairs	
Takatsuka Plant	SUU, Takaisuka-Chu, Hamamaisu-Sili, Shizuuka	Motorcycle engines assembling and machining	
Toyokawa Plant	1-2, Utari, Shiratori-cho, Toyokawa-shi, Aichi	Motorcycle final assembly, outboard assembly	
Kosai Plant	4520, Shirasuka, Kosai-shi, Shizuoka	Mini and compact vehicle assembly and finishing (Alto, Wagon R, MR Wagon, Twin, Alto Lapin, Kei, Aerio, Chevro- let Cruze, Swift, etc.)	
Iwata Plant	2500, Iwai, Iwata-shi, Shizuoka	Mini and compact vehicles, and commercial vehicle assembly and finishing (Carry, Every, Jimny, Escudo, etc.)	
Osuka Plant	6333, Nishiobuchi, Osuka-cho, Ogasa-gun, Shizuoka	Foundry	
Sagara Plant	1111, Shirai, Sagara-cho, Haibara-gun, Shizuoka	Automobile engines assembling	
Parts Plant	3985-1300, Shirasuka, Kosai-shi, Shizuoka	Spare parts administration	
Training Center	20-40, Kawana, Inasa-cho, Inasa-gun, Shizuoka	Education and training	
Tokyo Branch Office	Suzuki Bldg. Higashishinbashi 2-2-8, Higashishinbashi, Minato-ku, Tokyo	Public relations	
Yokohama R & D Center	2-1, Sakuranamiki, Tsuzuki-ku, Yokohama-shi, Kanagawa	Research and development	
Miyakoda R & D Center	1-1-2, Shinmiyakoda, Hamamatsu-shi, Shizuoka	Research and development	
Ryuyo Proving Grounds	4935, Komaba, Ryuyo-cho, Iwata-gun, Shizuoka	Testing and development of motorcycles and automobiles	
Shimokawa Proving Grounds	34, Sannohashi, Shimokawa-cho, Kamikawa-gun, Hokkaido	Testing and development of motorcycles and automobiles	
Sagara Proving Grounds	1111, Shirai, Sagara-cho, Haibara-gun, Shizuoka	Inspecting of automobiles	

Land, buildings, and number of personnel at the Head Office and individual plants (as of July 1st, 2003)

Name	Land (m ²)	Buildings (m ²)	Number of personnel
Head Office	205 000	125.000	9 170
Takatsuka Plant	205,000	125,000	8,170
Toyokawa Plant	185,000	70,000	680
Kosai Plant	1,104,000	407,000	2,340
Iwata Plant	289,000	169,000	1,580
Osuka Plant	149,000	47,000	370
Sagara Plant	1,936,000	50,000	780

The Suzuki Group Principal subsidiaries of the Suzuki group in Japan (as of July 1st, 2003)

Manufacturing companies	Suzuki Hamamatsu Auto Parts Mfg. Co., Ltd. Suzuki Precision Industries Co., Ltd.
	Hamamatsu Pipe Co., Ltd.
	Suzuki Akita Auto Parts Mfg. Co., Ltd.
	Enshu Seiko Co., Ltd.
	S. Tech Co., Ltd.
	Snic Co., Ltd.
	Suzuki Toyama Auto Parts Mfg. Co., Ltd.
	Suzuki Transportation and Packing Co., Ltd.
Non-manufac-	Suzuki Business Co., Ltd.
turing	Bell Art Co., Ltd.
companies	Suzuki Nousei Center Co., Ltd.
	Suzuki Works Techno Ltd.
Sales companies	Suzuki Marin Co., Ltd.
	82 directly managed domestic distribution companies,
	24 directly managed overseas distribution companies

Editor's Note

This environmental report is published as a complete work. The fiscal 2002 report was created and published as an "Additional Data Version" due to the timing and such of its publication between fiscal 2001 and fiscal 2002. To please the many readers who requested the publication of a "Complete Work" we have published this environmental report as a complete work. Annual reports in the future will also be published as a complete work. We would like to know your opinions so that we can create future reports that are more readable and understandable.

In regard to third-party certificate, the number of companies which list third-party certificate is gradually increasing, and the Environmental Agency, etc., are holding discussions on this topic. We have not, however, reported on gaining certification or on thirdparty reports as of yet. Also, in regard to changing over to a Sustainability Report, the number of companies publishing such reports has been on the rise. This, together with the third-party certificate issue will be taken under consideration.

For all inquiries, please contact

SUZUKI MOTOR CORPORATION Environment Planning Department

300 TAKATSUKA, HAMAMATSU, JAPAN FAX : 81-53-440-2457

Published: September, 2002

This report is also available on our homepage. http://www.globalsuzuki.com/

Booklet printed by Chubu Printing Co., Ltd. / Support and PDF file creation by POINT Co., Ltd.

SUZUKI MOTOR CORPORATION

300 TAKATSUKA, HAMAMATSU, JAPAN

