

2002 SUZUKI ENVIRONMENTAL REPORT

Contents

Environmental Management 1
Environmental Accounting System 1
Gaining ISO14001 Certification1
Results of Environmental Performance in Fiscal 20011
Reducing Pressure on the Environment2
Design and Development (Automobiles) 2
Manufacturing and Purchasing2
Social Contributions 3
Environmental Data 4
A List of Vehicles That Meet with Green Purchasing Laws
The Number of Low Pollution Vehicles Produced5
A List of Low Exhaust Emission Vehicles that were Delivered to the Market5
Environmental Data for New Products 6
Plant Site Environmental Data9

A Histor	y of Suzuki's
Environ	nental Activities

11

This report is an English translation of the original Japanese text of the Suzuki Environmental Report. It contains data that is in addition to the 2001 Environmental Report (mainly the results of 2000). For this reason, the text mainly refers to Suzuki's domestic environmental conservation activities carried out in fiscal 2001 (April 2001 to March 2002). (Also, unless the related company or dealer, etc., is mentioned, the text refers to the SUZUKI MOTOR CORPO-RATION only.)

The next environmental report will be published in the summer of 2003.

Introduction

This year marks a turning point. Ten years have passed since the 1992 Earth Summit, and the "Environmental Development Summit", aimed at environmental preservation coexisting with economic growth, was held in Johannesburg, South Africa. The environmental movement is gaining in importance worldwide.

In Japan, we have established "General Rules that Promote New Global Warming Measures" to achieve the goals laid out in the Kyoto Protocol. With concrete measures that we can use to tackle global warming included in these new general rules, it is time that we renew our way of thinking, i.e. it is time for individuals to take more responsibility than before. To promote this new way of thinking among our employees, Suzuki has initiated a company wide "Idling Stop Campaign" in addition to the "Waste Zero Campaign".

In regard to our products, we are collaborating with GM in the development of fuel cell technologies for the future.

In addition to that, we are moving forward with the development of low pollution vehicles, such as hybrid vehicles, etc., and in April of this year, we commenced operation of vehicle share systems that utilize electric vehicles. We are also working to reduce the amount of substances with environmental impact in our motorcycles and special products.

At present, environmental preservation efforts working in harmony with achieving economic growth is being pursued within the business sector. Suzuki is promoting environmental preservation while manufacturing products of quality that please our customers.

Osamu Suzuki

Chairman & CEO

Masao Toda

President/COO/Environmental Committee Chairman

Environmental Management

Environmental Accounting System

< Cost of Environmental Conservation >

(Unit: Fiscal Year) (Unit: ¥100,000,00			
Classification	Fiscal 1999	Fiscal 2000	Fiscal 2001
Cost Within the Corporation	24.0	23.4	22.6
(Breakdown)			
Pollution Prevention	(9.1)	(7.7)	(7.3)
Environmental Conservation	(7.7)	(8.3)	(8.0)
Recycling of Resources	(7.3)	(7.4)	(7.3)
Cost of the upstream and downstream	0.8	0.3	0.2
Cost of Managerial Activities	6.8	6.9	8.9
Cost of Research and Development	117.7	140.1	174.5
Cost of Social Activities	1.1	2.0	2.2
Cost of Environmental Damage	0.3	0.3	0.3
Total	150.7	173.0	208.6

< Effectiveness of Environmental Conservation > (Compared to the previous fiscal year.) (Unit: ¥100,000,000)

Item		Fiscal 1999	Fiscal 2000	Fiscal 2001
Economical Effect	Energy Cost Reduction	1.4	3.4	2.9
	Waste Management Cost Reduction	0.2	0.2	0.2
	Resource Cost Reduction	0.3	6.1	7.9
	Total	1.8	10.0	11.0

(Note) • Since some figures were rounded off, they may not agree with the total. • These are in-house environmental figures.

Gaining IS014001 Certification

Domestic Plants	Plant Name	Date of ISO14001 Certification
	Kosai Plant	July 1998
	Osuka Plant	September 1999
	Sagara Plant	September 1999
	Toyokawa Plant	December 2000

In regard to the head-office Plant and our Iwata plant, we are working toward obtaining certification in March of 2003.

Overseas Factories	Company Name	Date of ISO14001 Certification
	Magyar Suzuki Corporation (Hungary)	April 1988
	Maruti Udyog Ltd. (India)	December 1999
	Suzuki Spain (Spain)	February 2000
	CAMI Automotive Inc. (Canada)	June 2000
	Nanjing Jincheng Suzuki Motorcycle Co., Ltd.	February 2002

About our foreign plants, each of our companies in Columbia, Thailand, and the United States is working toward gaining certification.

	Company Name	Date of ISO14001 Certification
Related	Suzuki Toyama Auto Parts Mfg. Co., Ltd.	March 2001
Companies	Suzuki Hamamatsu Auto Parts Mfg. Co., Ltd.	June 2001
	Suzuki Precision Industries Co., Ltd.	October 2001
	Suzuki Akita Auto Parts Mfg. Co., Ltd	March 2002

Results of Environmental Performance in Fiscal 2001

Items	Fisca		
items	Goals	Results	Fiscal 2002 Goals
	Introduce vehicles to the market that meet the 2010 standards as soon as possible.	Improved the fuel economy of our Carry and Every vehicles, and added vehicles that meet the 2010 fuel standards.	As planned, introduce vehicles to the market that meet the 2010 stan
Fuel economy	 Exceed the previous year's fuel economy aver- ages in all weight categories. 		
Exhaust Gas	Introduce to the market as soon as possible, mini trucks that comply with new short term regulations.	Introduced mini trucks into the market that comply with new short term regulations ahead of schedule.	Provide ultra-low exhausi gas vehicles.
Clean Energy Automobiles	Continue with research and development of hybrid vehicles and natural gas vehicles.	 Hybrid vehicles obtained registration and licens- ing which has allowed for the start of testing on public roads. 	Continue with the testing of hybrid vehicles on public roads for product
Automobiles		 Exhibited and promoted the sale of natural gas vehicles at regional low pollution events. 	development.
Materials with Environmen- tal Impact	To further reduce the amount of lead used in new vehicles, we implemented a new reduction goal of less than 1/3 the amount of lead that was used in 1996.	Reduced the lead used in the Wagon R, Wagon R Solio, and MR Wagon to less than 1/3.	Gradually move to lead free wheel balancers.

Manufacturing/ Purchasing

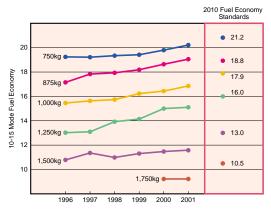
Design/ Development

Items		Fiscal 2001		Fiscal 2002 Goals	
		Goals	Results	FISCAI 2002 Goals	
CO2 Amount of CO2 (Carbon Dioxide) *1 emissions per sales		23.00 tons-CO2/100,000,000 Yen (11% reduction compared to 1990)	21.00 tons-CO2/100,000,000 Yen (18.8% reduction compared to 1990)	20.79 tons-CO ₂ /100,000,000 Yen (1% reduction compared to 2001) *2	
Waste	Landfill Waste	Less than 250 tons	121 tons	Less than 60 tons	
VOC (Volatile Organic Compounds)	Approximate Emission per Area	56g/sq. meter (34.5% reduction compared to 1995)	46g/sq. meter (46% reduction compared to 1995)	45g/sq. meter (47% reduction compared to 1995)	

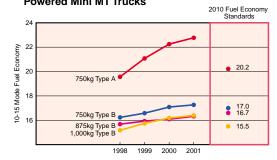
*1: To correspond with the other items in the list, the range from which data is accumulated was revised (6 Suzuki plants + 8 related companies → 6 Suzuki plants)
*2: Long term CO₂ emission goals: By 2010, reduce CO₂ emissions per sales by 20% compared to 1990.

Market

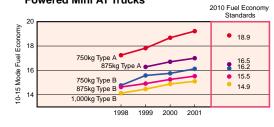
ltown	Fisca	l 2001	Fiscal 2002 Goals
Items	Goals	Results	FISCAI 2002 Goals
Recycling	Start nation-wide collection of used bumpers.	Nation-wide collection started.	Increase the amount of collection.


Reducing Pressure on the Environment

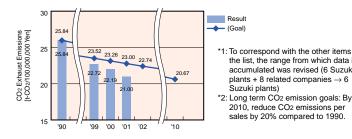
Design and Development


Automobiles

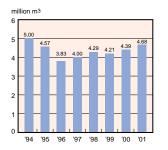
Trends in Average Fuel Economy of Gasoline Vehicles According to Weight


Working to meet 2010 Fuel Economy Standards, improve-ments in the average fuel economy of each weight category are being achieved.

Trends in Fuel Economy for Gasoline Powered Mini MT Trucks



Trends in Fuel Economy for Gasoline **Powered Mini AT Trucks**

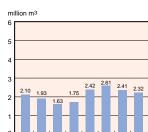


Manufacturing and Purchasing

■ Trends in and Goals for CO2 Exhaust Emissions

Amount of Water Used

Amount of Waste Water

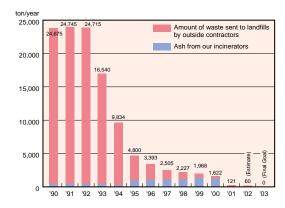

Suzuki plants)

To correspond with the other items in

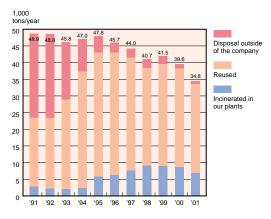
the list, the range from which data is accumulated was revised (6 Suzuki


plants + 8 related companies $\rightarrow 6$

2010, reduce CO₂ emissions per sales by 20% compared to 1990.



'96 '97 '98 '99 '00


Amount of VOC Exhaust Emissions

■ Trends in Landfill Waste (Post-2002 estimation)

Trends in the Amount of Waste

Social Contributions

Event Participation (Exhibitions, Cleanup Activities, etc.)

(Actual results in fiscal 2001)

Low Pollution Vehicle Exhibitions, etc.

At Suzuki, we introduce and promote low pollution vehicles through exhibitions such as low pollution vehicle fairs, etc.

Event Name	Description	Sponsor	Location	Date
Low Pollution Automobile Fair 2001 Exhibit natural gas and electric powered vehicles		Ministry of the Environment and the Tokyo Metropolitan Government	Yoyogi Park	6/1 - 6/2
Sapporo Eco Car Show	Exhibit natural gas and electric powered vehicles	Sapporo-city	Access Sapporo	8/4 - 8/5
Shizuoka Environment, Volunteer, Technology Exhibition	Exhibit natural gas and electric powered vehicles	Shizuoka Environment, Vol- unteer and Technology Exhi- bition Organizing Committee	Twin Messe Shizuoka	9/13 - 9/15
Low Pollution Automobile Fair in Nagoya 2001	Exhibit natural gas powered vehicles	Nagoya-city	Nagoya City Hall Shyounai-Ryokuchi	9/29 - 9/30
Low Pollution Fair in Osaka	Exhibit natural gas and electric powered vehicles	Osaka-fu	Banpaku Memorial Park	11/10 - 11/11
Experimental Test Drive of Low Pollution Vehicles in Odawara	Exhibit and test drive of natural gas and electric powered vehicles	Odawara-city	Dyna City West	11/11

Community Environmental Cleanup

To contribute to the environmental cleanup of our community, many of our employees join community cleanup activities such as beach cleanup, riverbed cleanup, park cleanup, etc. every year.

Event Name	Description	Sponsor	Location	Date	Number of Persons Joining
Archipelago Cleanup Operation	Operation #1 Hamamatsu Welkame Cleanup Operation, Beach Cleanup	"A Little Kindness"	Nakatajima "Kite Festival" Park	5/13	Participants: 829
					Participating Employees: 66
	Operation #2 Park Cleanup		Hamamatsu Castle Park	7/14	Participants: 709
					Participating Employees: 48
			Nakatajima Dune	11/17	Participants: 703
	Operation #3 Beach Cleanup				Participating Employees: 51

* In addition to the activities described above, we install signs around our Head office and Takatsuka plant that remind people not to litter as a part of the "A Little Kindness" movement.

The Suzuki Foundation Contributes to Research

The Suzuki Foundation supports research related to environmental technologies.

< A list of environmental themes promoted by the Suzuki Foundation >

No.	Research Themes	Fiscal Year
1	Developed a hybrid A1 alloy that offers low friction, protection from wear, and smooth movement.	
2	Established a method of forming magnesium alloy plate material to reduce the weight of machines.	2001
3	Research the behavior of harmful exhaust gases produced when starting the engine.	

Environmental Data

A List of Vehicles That Meet with Green Purchasing Laws

(As of March, 2002)

< Mini Passenger Cars >

Model	Vehicle Type	Engine	Displacement (L)	Drive System	Transmission	Low Emission Level (See note)	Regulations Adopted	Comment
	LA-HA23S	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	3 Door
	TA-HA23S	K6A	0.658	2WD	5MT	Good	2010 Fuel Economy Standard	5 Door
A 14 a	LA-HA23S	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
Alto	LA-HA23S	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-HA23S	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-HA23S	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-HE21S	K6A	0.658	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
Alto Lapin	LA-HE21S	K6A	0.658	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-HE21S	K6A	0.658	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-MC22S	K6A	0.658	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-MC22S	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
Wagon R	LA-MC22S	K6A	0.658	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-MC22S	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-MC22S	K6A	0.658	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-HN22S	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-HN22S	K6A	0.658	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
Kal	TA-HN12S	F6A	0.657	2WD	5MT	Good	2010 Fuel Economy Standard	5 Door
Kei	TA-HN12S	F6A	0.657	4WD	5MT	Good	2010 Fuel Economy Standard	5 Door
	TA-HN22S	K6A	0.658	2WD	5MT	Good	2010 Fuel Economy Standard	5 Door
	TA-HN22S	K6A	0.658	4WD	5MT	Good	2010 Fuel Economy Standard	5 Door
	LA-MF21S	K6A	0.658	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
MR Wagon	LA-MF21S	K6A	0.658	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-MF21S	K6A	0.658	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door

< Passenger Cars >

Model	Vehicle Type	Engine	Displacement (L)	Drive System	Transmission	Low Emission Level (See note)	Regulations Adopted	Comment
	LA-RB21S	M15A	1.49	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-RB21S	M15A	1.49	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
Aerio	LA-RB21S	M15A	1.49	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-RB21S	M15A	1.49	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-RB21S	M15A	1.49	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-RA21S	M15A	1.49	2WD	5MT	Excellent	2010 Fuel Economy Standard	4 Door
	LA-RA21S	M15A	1.49	2WD	4AT	Excellent	2010 Fuel Economy Standard	4 Door
Aerio Sedan	LA-RA21S	M15A	1.49	4WD	5MT	Excellent	2010 Fuel Economy Standard	4 Door
Aerio Sedan	LA-RA21S	M15A	1.49	2WD	5MT	Excellent	2010 Fuel Economy Standard	4 Door
	LA-RA21S	M15A	1.49	2WD	4AT	Excellent	2010 Fuel Economy Standard	4 Door
	LA-RA21S	M15A	1.49	4WD	5MT	Excellent	2010 Fuel Economy Standard	4 Door
Swift	LA-HT51S	M13A	1.328	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
Swift	LA-HT51S	M13A	1.328	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-MA64S	K10A	0.996	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
Waxan D Calla	LA-MA64S	K10A	0.996	4WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
Wagon R Solio	LA-MA64S	K10A	0.996	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-MA64S	K10A	0.996	4WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door

< Mini Commercial Vehicles >

Model	Vehicle Type	Engine	Displacement (L)	Drive System	Transmission	Low Emission Level (See note)	Regulations Adopted	Comment
	LE-HA23V	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	3 Door
Alto	LE-HA23V	K6A	0.658	2WD	3AT	Excellent	2010 Fuel Economy Standard	3 Door
	LE-HA23V	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	3 Door
	LE-DA62V	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	LE-DA62V	K6A	0.658	2WD	3AT	Excellent	2010 Fuel Economy Standard	5 Door
	LE-DA62V	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
E.com/	LE-DA62V	K6A	0.658	4WD	3AT	Excellent	2010 Fuel Economy Standard	5 Door
Every	TE-DA62V	K6A	0.658	2WD	5MT	Good	2010 Fuel Economy Standard	5 Door
	TE-DA62V	K6A	0.658	2WD	4AT	Good	2010 Fuel Economy Standard	5 Door
	TE-DA62V	K6A	0.658	4WD	5MT	Good	2010 Fuel Economy Standard	5 Door
	TE-DA62V	K6A	0.658	4WD	4AT	Good	2010 Fuel Economy Standard	5 Door
Correct	LE-DA62T	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	2 Door
Carry	LE-DA62T	K6A	0.658	2WD	3AT	Excellent	2010 Fuel Economy Standard	2 Door

< Clean Energy Vehicles >

Model	Vehicle Type	Engine	Displacement (L)	Drive System	Transmission	Standards Judged By	Comment	
	LE-DA62V (improved)	MEV40K	-	2WD	AT	Low Pollution Vehicles	Electric Vehicle	
Every			0.050	2WD	MT, AT	Low Pollution Vehicles	Natural Case Makiala	
	LE-DA62V (improved)	K6A (improved)	0.658	4WD	MT	Low Pollution vehicles	Natural Gas Vehicle	
Wagon R	LA-MC22S (improved)	K6A (improved)	0.658	2WD	AT	Low Pollution Vehicles	Natural Gas Vehicle	

(NOTE) Exhaust Emission Levels

 Codd:
 A 25% reduction compared to 2000 standards

 Excellent:
 A 50% reduction compared to 2000 standards

 Ultra:
 A 75% reduction compared to 2000 standards

Standards

Ministry of the Environment: Green Acquisition Law Standard

The Number of Low Pollution Vehicles Produced

(Actual results in fiscal 2001)

< Shipment Results	in 2001 >			Including OEM	uding OEM — denotes that there are no equivalent model		
			Automobiles		<	Bus	Total
		Regular/Compact	Mini Vehicles	Regular/Compact	Mini Vehicles	Bus	Total
Low Pollution	Electric Vehicles	—	_	—	26	—	26
Vehicles	Natural Gas Vehicles	_	49	_	107	—	156
Low Fuel Economy	☆☆☆	—	0	—	_	—	0
and Low Exhaust Emission Certified	☆☆	13,771	211,902	—	91,535	—	317,208
Vehicles*	\$	—	10,678	—	2,744	—	13,422
Diesel Substitute LPG	Vehicles	—	_	—	—	—	—
Tota	Total		222,629	—	94,412	—	330,812
The Total Results of V Fiscal 2001 (Shipmen		49,193	436,247	_	180,461	_	665,901

• These vehicles have achieved early conformity to fuel economy standards based on the Law concerning the Rational Use of Energy, and are certified as low exhaust emission gas vehicles based on low exhaust emission gas vehicle certification implementation guide lines.

Vehicles with low exhaust gas certification

 ☆☆☆ (Ultra-Low Emission Gas):
 A 75% reduction compared to 2000 exhaust gas standards

 ☆☆ (Excellent-Low Emission Gas):
 A 50% reduction compared to 2000 exhaust gas standards

 ☆ (Good-Low Emission Gas):
 A 25% reduction compared to 2000 exhaust gas standards

A List of Low Exhaust Emission Vehicles that were Delivered to the Market

(Actual results in fiscal 2001)

	Model	Good-Low Emission Gas Vehicle	Excellent-Low Emission Gas Vehicle	Ultra-Low Emission Gas Vehicle
	Alto	1 Туре		
	Alto Lapin		1 Туре	1 Type
Mini Passenger Cars	Every Wagon	1 Туре		
Gais	Kei	1 Туре	1 Туре	
	MR Wagon	1 Туре	1 Туре	
	Every Landy		1 Туре	
Passenger Cars	Aerio Sedan		1 Туре	
Fassenger Cars	Chevrolet Cruze		1 Туре	
	Swift		1 Туре	
Mini Commercial	Every	1 Туре	1 Туре	
Vehicles	Carry		1 Туре	
То	tal	5 Types	9 Types	1 Туре

Environmental Data for New Products

(Actual results in fiscal 2001)

· 175 ·

A ST

Automobiles

< Mini Passenger Cars > Alto Lapin MR Wagon Vehicle Name Alto Every Wagon Kei Date Sales Began 2001.11.14 2001.11.14 2001.12.4 2002.1.30 2001.9.4 Vehicle Type TA-HA23S UA-HE21S LA-HE21S TA-DA62W GH-DA62W LA-HN22S TA-HN22S LA-MF21S TA-MF21S Model K6A K6A K6A K6A K6A Specifications Displacement (L) 0.658 0.658 0.658 0.658 0.658 In-Line In-Line In-Line In-Line In-Line In-Line In-Line 3-Cylinder DOHC In-Line 3-Cylinder DOHC Engine 3-Cylinder DOHC 3-Cylinder DOHC 12Valve 3-Cylinder DOHC 3-Cylinder DOHC 12Valve 3-Cylinder DOHC 3-Cylinder DOHC 12Valve Туре 12-Valve Lean Burn 12 Valve VVT 12Valve Intercooler Turbo 12 Valve VVT Intercooler Turbo 12 Valve VVT Intercooler Turbo Fuel Type Unleaded Regular Gasoline Fuel System Electronic Fuel Injection Equipment (EPi) Drive System 2WD 2WD 4WD 2WD/4WD 2WD/4WD 2WD/4WD 2WD/4WD 2WD/4WD 2WD/4WD Drive Train MT 5MT 5MT 5MT 5MT 5MT Transmission AT 4AT 4AT 4AT 4AT 4AT 3AT 4AT 4AT ΜТ 700 890-900 900-960 760 780-820 Weight (kg) AT 780 820 940-950 920-980 770 790-830 840-880 860-900 Maximum Load Capacity (kg) ΜТ 30.0 16.2-16.6 17.0 22.5 19.6-20.0 *10 • 15 Mode Fuel Economy (km/l) iel Con-imption Rate AT 19.0 17.4 15.2-15.6 15.0 19.2 16.6-18.2 16.8-18.4 16.8 Fuel CO₂ Emissions (10 • 15 Mode) (g/km) 79 124 136 142-155 139-157 105-123 118-142 128-140 140 2010 Fuel Economy Standard Achieved Achieved Achieved Achieved Achieved Achieved' 2000 2000 2000 2000 2000 **Regulations Adopted** 2000 2000 2000 2000 Good-Low Exhaust Emission 0 0 0 0 Emission Certification Environmental Information Level of Low Emission Vehicles Excellent-Low Exhaust Emission $^{\odot}$ $^{\odot}$ 0 Ultra-Low \diamond Exhaus Exhaust Emission 10•15 Mode co 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 Regulation HC 0.06 0.02 0.04 0.06 0.08 0.04 0.06 0.04 0.06 Figures (g/km) NOx 0.06 0.02 0.04 0.06 0.08 0.04 0.06 0.04 0.06 **Regulations Adopted** 1998 1998 1998 1998 1998 Noise Acceleration Noise Regulation 76 76 76 76 76 Figures (dB(A)) 500 530 Amount of Refrigerant Used (g) 500 500 350 Battery Tray, Tank Lower Cover, Battery Tray, Tank Lower Cover, Battery Tray, Engine Under Cover, Radiator Battery Tray, Under Seat Box, Battery Tray, Under Seat Tray Use of Recycled Materials Dash Silencer Dash Silencer Under Cover Dash Silencer Amount of Lead Used Achieved Achieved Achieved Achieved Achieved (Achieved 1/2 Compared to 1996)

* This mark indicates that not all vehicles are in compliance.

< Passenger Cars >

		Vehicle Na	me		Every Landy	Aerio Sedan	Chevrolet Cruze	Swift
Date	e Sales E	Began			2001.5.24	2001.11.14	2001.11.1	2002.1.21
	Vehicle	туре			LA-DA32W	LA-RA21S	LA-HR51S	LA-HT51S
suo		Model			G13B	M15A	M13A	M13A
ati	e	Displacement (L)	Displacement (L)		1.298	1.490	1.328	1.328
cific	Engine	Туре	-		In-Line 4-Cylinder SOHC 16V	In-Line 4-Cylinder DOHC 16V VVT	In-Line 4-Cylinder DOHC 16V VVT	In-Line 4-Cylinder DOHC 16V VVT
Specifications	ш	Fuel Type			·	Unleaded Reg	gular Gasoline	
05		Fuel System				Electronic Fuel Injec	tion Equipment (EPi)	
	م -	Drive System			2WD/4WD	2WD/4WD	2WD/4WD	2WD/4WD
-	Drive Train	-		MT	_	5MT	_	5MT
		Transmission		AT	4AT	4AT	4AT	4AT
14/	ght (kg)			MT	_	1,140-1,200	_	880-930
wei	gnt (kg)			AT	1,010-1,080	1,150-1,210	940-990	910-960
Max	imum Lo	oad Capacity (kg)			-	—	_	_
	Ϋ́	10 • 15 Mode Fue	Economy	MT	_	16.0-18.0	_	18.0-18.6
	Fuel Con- sumption Rate	(km/l)		AT	14.0-15.6	14.4-16.2	17.0-17.4	16.4-17.4
	la m	CO ₂ Emissions (10 • 15 Mode) (g/km)	151-168	131-164	136-139	127-144
	s	2010 Fuel Econor	my Standard Acl	hieved		Achieved*		Achieved*
		Regulations Ado	pted		2000	2000	2000	2000
_ ر	suo	Certification	Good-Low Exhaust Emis	ssion				
matio	Emissions	Level of Low Emission	Excellent-Lov Exhaust Emis		Ø	Ø	Ø	Ø
Environmental Information	Exhaust E	Vehicles	Ultra-Low Exhaust Emis	ssion				
ntal	xha	10 • 15 Mode	со		0.67	0.67	0.67	0.67
mei	ш	Regulation	HC		0.04	0.04	0.04	0.04
ron		Figures (g/km)	NOx		0.04	0.04	0.04	0.04
nvi	e,	Regulations Ado	pted		1998	1998	1998	1998
ш	E Regulations Adopted J O Acceleration Noise Regulation Figures (dB(A))		76	76	76	74		
	Amount of Refrigerant Used (g)		Single: 530 Twin: 1,000	500	380	360		
	Use of Recycled Materials		Battery Tray, Under Seat Tray, Dash Silencer	Foot Rest Pedal, Battery Tray, Dash Silencer	Battery Tray, Under Seat Tray, Dash Silencer	Battery Tray, Under Seat Tray, Dash Silencer		
		nt of Lead Used ved 1/2 Compared	to 1996)		Achieved	Achieved	Achieved	Achieved

* This mark indicates that not all vehicles are in compliance.

		Vehicle Nar	ne		Ev	ery	Carry
Dat	e Sales E	Began			200	1.9.4	2001.9.4
	Vehicle	Туре			LE-DA62V	TE-DA62V	LE-DA62T
s		Model			к	6A	K6A
<u>io</u>		Displacement (L)			0.6	558	0.658
Specifications	Engine	Туре			In-Line 3-Cylinder DOHC 12Valve	In-Line 3-Cylinder DOHC 12Valve Intercooler Turbo	In-Line 3-Cylinder DOHC 12Valve
S		Fuel Type				Unleaded Regular Gasoline	
		Fuel System				Electronic Fuel Injection Equipment (EPi)
		Drive System			2WD/4WD	2WD/4WD	2WD/4WD
	Drive Train	-		MT	5MT	5MT	5MT
		Transmission		AT	3AT	4AT	3AT
				MT	1,270(1,280)-1,340(1,350)	1,260(1,270)-1,350(1,360)	1,140-1,200
Wei	ght (kg)			AT	1,230(1,240)-1,320(1,330)	1,280(1,290)-1,370(1,380)	1,150-1,210
Max	cimum Lo	oad Capacity (kg)			350	(250)	350
	÷ =	*10 • 15 Mode Fue	Economy	MT	16.0-16.6	17.0	16.4-17.2
	te co	(km/l)	•	AT	15.0-15.4	15.0	15.4-16.2
	Fuel Con- sumption Rate	CO ₂ Emissions (10 • 15 Mode) (g/km)	142-157	139-157	137-153
	토장	2010 Fuel Econom	ny Standard Ac	hieved	Achieved	Achieved	Achieved*
		Regulations Ado	pted		2002 2002		2002
ation	Emissions	Certification Level of Low	Good-Low Exhaust Emis	ssion		0	
Environmental Information		Emission Vehicles	Excellent-Lov Exhaust Emis		Ø		O
all	Exhaust	10 • 15 Mode	CO		3.30	3.30	3.30
ent	L H	Regulation	HC		0.07	0.10	0.07
E	-	Figures (g/km)	NOx		0.07	0.10	0.07
iro.	e	Regulations Ado	pted		20	000	2000
Ĕ	E Regulations Adopted Acceleration Noise Regulation Figures (dB(A))		7	76			
	Amount of Refrigerant Used (g)				5	530	
	Use of	Recycled Materials	3			ine Under Cover, nder Cover	Battery Tray, Engine Under Cover, Radiator Under Cover
	Amount of Lead Used (Achieved 1/2 Compared to 1996)				Achi	eved	Achieved

< Mini Truck (Mini Commercial Vehicle) >

* This mark indicates that not all vehicles are in compliance. * Values given in parentheses () in the Weight and Maximum Load Capacity categories are values when the maximum number of passengers are riding in the vehicle.

Motorcycles

< Motorcycles >

	Vehicle Name		Let's II (Standard)	Birdie90	VanVan200	Sky Wave 250Type-S	GSX250FX	250SB
Date Sa	ales Began		2002.2.23	2001.10.15	2002.3.28	2001.11.21	2002.2.22	2002.2.11
	Vehicle Type		BB-CA1PA	BC-BD42A	BA-NH41A	BA-CJ42A	BA-ZR250C	BA-LX250L
6	Engine Model		A196	D401	H403	J429	ZX250CE	LX250DE
Specifications	Туре		Forced Air-Cooled 2-Stroke	Air Cooled 4-Stroke	Air Cooled 4-Stroke	Water-Cooled 4-Stroke	Water-Cooled 4-Stroke	Water-Cooled 4-Stroke
ciţi	Displacement (cm3)		49	88	199	249	249	249
Spe	ອັ ກາ Transmission		Variable Ratio V-Belt	3-Speed Rotary Stop Type	5-Speed Return	Variable Ratio V-Belt	6-Speed Return	6-Speed Return
	Weight (kg)		72	103	125	185	173	134
Fuel Con- sumption Rate	60km Constant Speed Tes (km/l)	st Value	_	51.0	49.0	39.0	39.0	40.0
Fuel sump Ra	30km Constant Speed Tes (km/l)	st Value	59.0	_	_	_	_	_
	Regulations Adopted		1998	1999	1998	1998	1998	1998
Exhaust Emissions	Motorcycle Mode	со	8.00	13.0	13.0	13.0	13.0	13.0
mis	Regulation Figures HC		3.00	2.00	2.00	2.00	2.00	2.00
— <u> </u>	(g/km) NOx		0.10	0.30	0.30	0.30	0.30	0.30
e	Regulations Adopted		1998	2001	1998	1998	1998	1998
Noise	Acceleration Noise Regul Figures (dB(A))	ation	71	71	73	73	73	73

< Electric Assist Bicycles >

	Vehicle Name	Love SNA24	Love SNA26			
Dettern	Туре	Nickel Hydrogen Battery				
Battery	Capacity	24V-2.8Ah				
Charging System	Refresh Function	Yes				
Charging System	Charging Time	Approximate	ely 1.5 hours			
Approximate	On flat surfaces (low mode)	56km				
Operating Range with Assist	On flat surfaces (high mode)	39	km			
Operation	Normal conditions (high mode)	27km				

Marine and Power Products

	Category	Outboard Motor	Snowmobile (Engines)
Date Sales	s Began	November, 2001	December, 2001
Model Nar	ne	DF140	K6A EFI
Туре		14001F	_
		4-Stroke	4-Stroke
Fueine Tu		4-Cylinder	3-Cylinder
Engine Ty	pe	DOHC	DOHC
		Fuel Injection	Fuel Injection
Displacem	nent (cm2)	2,044	660
Weight (kg)		189 (Transom L)	
	Compliance with 2006 EPA Marine Engine Exhaust Emissions Regulations	0	Not Applicable
	Compliance with 2008 CARB Marine Engine Exhaust Emissions Regulations	0	Not Applicable
	Compliance with 2006 Japan Boat Manufacturer's Association Voluntary Engine Exhaust Emissions Regulations	0	Not Applicable
Exhaust Emission	Compliance with 2007 EPA Snowmobile Exhaust Emissions Regulations Phase 2 (Proposed)	Not Applicable	0
	CO(g/kw-hr)	_	75 *2
	HC(g/kw-hr)	_	3 *2
	NOx(g/kw-hr)	_	-
	HC+NOx(g/kw-hr)	14.6 *1	-
Fuel Economy	Fuel Consumption Rate at Maximum Output (g/kw-hr)	331	337 *2
Noise	Operator Noise (weighted calculation dBA)	84.7 *2	_

 $^{\ast}1$ Data provided to the EPA, CARB, and Japan Boating Industry Association $^{\ast}2$ In-house data

< Motorized Wheelchair >

Model Name	Senior Car	Motorized Wheelchair		
Model Name	ET-4G/ET4A	MC2000/MC3B	MC3000/MC3B	
Battery Type and Capacity	SC38-12 12V32Ah x 2	SC38-12 12V32Ah x 2	SC38-12 12V32Ah x 2	
Charge Time	Less than 8 hours	Less than 8 hours Less than 8 ho		
Approximate Operating Range	25km	24km	26km	
Weight (w/o battery)	69kg	56kg	56kg	
Practical Hill Climbing Angle	10°	8°	8°	

Plant Site Environmental Data

(Actual results in fiscal 2001)

- < Notations > ① Water Quality (Notations and Proper Names (Units))
 - pH: Hydrogen-ion concentration (none), BOD: Biochemical oxygen demand (mg/l), SS: Concentration of suspended solids in water (mg/l). All other items are referred to as mg/l.
 - ② Air Quality (Notations and Proper Names (Units)) NOx: Nitrogen Oxide (ppm), SOx: Sulfur Oxide (K value), Particulate (g/Nm³), Chlorine/Hydrogen chloride/Fluoride/Hydrogen Fluoride (mg/Nm³), Dioxin: ng-TEQ/Nm³
 - (3) The strictest regulations out of the Water Pollution Control Law, Air Pollution Control Law, Prefectural Ordinances, and Pollution Control Agreement are used. (— indicates no regulation value)
 - ④ There is no SOx measurement for the facilities that utilize sulferless LPG for fuel.

• Takatsuka Plant -

[Location]

 [Interstation]
 Shizuoka Prefect

 [Site Area (Building Area)]
 205,000m² (125,000m² (125,00m² (1

300 Takatsuka-cho Hamamatsu-city, Shizuoka Prefecture 205,000m² (125,000m²) Motorcycle Engine Assembly, Machine Processing 8,010

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
pH	5.8 - 8.6	7.0 - 7.9	7.5
BOD	20	3.5 or less	1.18
SS	30	1.9 - 14.8	5.29
Oil Content	5.0	0.2 - 2.8	0.73
Lead	0.1	0.01 or less	0.0004
Hexavalent Chromium	0.1	0.006 or less	under 0.005
Nitrogen	60	6.3 - 48.5	27.5
Phosphorus	8	0.2 or less	0.11

< Air Pollution Data (Discharge) >

Substance	Facilities	Regulated Values	Results	Average
NOx	Small Boiler	-	79 - 100	90
SOx (K value)	Small Boiler	7.0	1.36 - 2.77	2.15
Particulates	Small Boiler	_	0.01	0.01
Chlorine	AL Melting Furnace	30	under 1	under 1
Hydrogen Chloride	AL Melting Furnace	80	under 5	under 5
Fluoride/ Hydrogen Fluoride	AL Melting Furnace	3	under 0.2	under 0.2

• Iwata Plant -

[Location]	2500 Iwai Iwata-city, Shizuoka Prefecture
[Site Area (Building Area)]	298,000m ² (170,000m ²)
[Main Products]	Complete Assembly of EVERY, CARRY, JIMNY, EXCEED
[Number of Employees]	1,730

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
pH	5.8 - 8.6	6.9 - 7.8	7.4
BOD	15	1.2 - 10.8	5.1
SS	30	0.1 - 9.2	2.5
Oil Content	3	0.03 - 1.75	0.55
Cadmium	0.1	under 0.0005	0
Lead	0.1	under 0.01	0
Hexavalent Chromium	0.5	under 0.005	under 0.005
Nitrogen	60	7.9 - 17.0	12.1
Phosphorus	8	0.6 - 3.6	1.9

< Air Pollution Data (Discharge) >

Substance	Facilities	Regulated Values	Results	Average
	Boiler	150	78 - 84	81
NOx	Small Boiler	-	86 - 120	99
Nox	Hot Water	150	63 - 110	91
SOx (K value)	Boiler	17.5	2.66 - 3.15	2.91
SOX (R value)	Small Boiler	17.5	0.42 - 0.74	0.56
	Boiler	0.25, 0.3	under 0.01	under 0.01
Particulates	Small Boiler	_	0.02 or less	under 0.01
i articulates	Hot Water Boiler, etc.	0.1	under 0.01	under 0.01

• Kosai Plant -

[Location]	4520 Shirasuka Kosai-city, Shizuoka Prefecture
[Site Area (Building Area)]	1,102,000m ² (410,000m ²)
[Main Products]	Complete Assembly of ALTO, ALTO LAPIN,
[Number of Employees]	WAGON R, KEI, MŔ WAGOŃ, CHEVROLET CRUZE, SWIFT, WAGON R SOLIO 2,620

< Water Pollution Data (Discharge) > First Discharge (Plant #1, Plant #2)

Items	Regulated Values	Results	Average	
pH	5.8 - 8.6	7.3 - 8.2	7.5	
BOD	15	1.2 - 11.1	4.8	
SS	15	1.6 - 8.0	3.5	
Oil Content	2 (3 when raining)	1.5 or less	0.64	
Cadmium	0.002	under 0.0005	under 0.0005	
Lead	0.1	0.005 - 0.01	0.008	
Hexavalent Chromium	0.1	0.005 - 0.03	0.02	
Nitrogen	12	1.28 - 9.82	4.99	
Phosphorus	2	0.029 - 1.48	0.407	
Zinc	1	0.05 - 0.3	0.11	

Second Discharge (KD Plant)

Items	Regulated Values	Results	Average
pН	5.8 - 8.6	7.3 - 7.9	7.6
BOD	15	0.1 - 2.7	0.83
SS	15	5.0 or less	1.11
Oil Content	2 (3 when raining)	1.00 or less	0.18
Cadmium	0.002	under 0.0005	under 0.0005
Lead	0.1	0.005 - 0.01	0.006
Hexavalent Chromium	0.1	0.005	0.005
Nitrogen	12	0.70 - 8.09	2.92
Phosphorus	2	0.054 - 0.350	0.161
Zinc	1	0.05 - 3.0*	0.26

* Excessive amount due to corrosion of roofing materials (corrective measures already taken)

< Air Pollution Data (Discharged) >

Substance	Facilities	Regulated Values	Results	Average
	Small Boiler	150	68 - 92	81
	Incinerator	200	100 - 140	123
	Gas Turbine 1	70	17 - 29	25
	Gas Turbine 2	70	12 - 32	24
	Drying Oven	230	38 - 77	58
NOx	Water Heater/ Cooler 1	150	54	54
	Water Heater/ Cooler 2	150	66	66
	Water Tube Boiler	150	77 - 110	94
	Small Boiler	7	0.09 - 0.4	0.25
	Incinerator	7	0.11 - 0.43	0.26
SOx (K value)	Gas Turbine 1	7	0.18	0.18
	Gas Turbine 2	7	0.17 - 0.18	0.18
	Drying Oven	7	0.16	0.16
	Small Boiler	0.1	0.01	0.01
	Incinerator	0.15	0.01 - 0.03	0.02
	Gas Turbine 1	0.05	0.01	0.01
	Gas Turbine 2	0.05	0.01	0.01
	Drying Oven	0.2	0.02	0.02
Particulates	Water Heater/ Cooler 1	0.1	0.01	0.01
	Water Heater/ Cooler 2	0.1	0.01	0.01
	Water Tube Boiler	0.1	0.01	0.01
Hydrogen Chloride	Incinerator	150	60 - 70	65
Dioxin	Incinerator	80	0.017	0.017

• Toyokawa Plant -

[Location]

[Main Products]

1-2 Utari Shiratori-cho Toyokawa-city, Aichi Prefecture [Site Area (Building Area)] 185,000m2 (70,000m2)

[Number of Employees]

Motorcycle Assembly, Outboard Motor Assembly, Knock Down Components 720

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	7.3 - 7.6	7.0
BOD	20	4.5 - 27.0*	11.3
SS	20	5 - 42*	13.7
Oil Content	5	2.5	2.5
Cadmium	0.1	0	0
Lead	0.1	0.01 or less	0.0004
Hexavalent Chromium	0.5	0.05	0.05
Nitrogen	15	4.47 - 6.44	5.7
Phosphorus	2	0.30 - 0.78	0.48

* Excessive amount due to stagnation of collected rainwater (corrective measures already taken)

< Air Pollution Data (Discharge) >

Substance	Facilities	Regulated Values	Results	Average
NOx	Small Boiler	_	76 - 100	85
	Oven	230	5	5
Particulates	Small Boiler	_	0.01	0.01
Faillouidles	Oven	0.2	0.01	0.01

• Osuka Plant -

[Site Area (Building Area)]

[Number of Employees]

[Location]

[Main Products]

6333 Nishi Obuchi Osuka-cho Ogasa-gun, Shizuoka Prefecture 149,000m2 (47,000m2) Cast Parts Manufacturing 420

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	6.8 - 7.1	7.1
BOD	10	1.3 - 9.1	5.5
SS	10	3.9 or less	1.8
Oil Content	2	1.7 or less	0.8
Cadmium	0.1	0.001 or less	0
Lead	0.1	under 0.005	0
Hexavalent Chromium	0.5	under 0.005	under 0.005
Nitrogen	60	0.03 - 3.4	3.34
Phosphorus	8	0.35 or less	0.19

< Air Pollution Data (Discharged) >

Substance	Facilities	Regulated Values	Results	Average
NOx	Gas Turbine	70	16 or less	8.3
	Casting Furnace	0.1	under 0.01	under 0.01
	Gas Turbine	0.05	under 0.01	under 0.01
Particulates	Aluminum Melting Furnace	0.2	under 0.01	under 0.01
	Aluminum Heating Furnace	0.2	0.01 or less	under 0.01
Chlorine	Aluminum Melting Furnace	10	under 1	under 1
	Aluminum Heating Furnace	10	under 1	under 1
Hydrogen Chloride	Aluminum Melting Furnace	20	under 5	under 5
	Aluminum Heating Furnace	20	under 5	under 5
Fluoride/ Hydrogen Fluoride	Aluminum Melting Furnace	1	under 0.2	under 0.2
	Aluminum Heating Furnace	1	0.2 or less	0.2

• Sagara Plant -

•	
[Location]	1111 Shirai Sagara-cho Haibara-gun, Shizuoka Prefecture
[Site Area (Building Area)]	1,936,000m2 (50,000m2)
[Main Products]	Automobile Engine Assembly, Casting and Machine Processing of Main Components for Engine
[Number of Employees]	760

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	A
items	•	Results	Average
pH	5.8 - 8.6	7.7 - 7.8	7.8
BOD	15	1.7 - 4.1	2.7
SS	30	1.3 - 1.9	1.6
Oil Content	3	1	1
Cadmium	0.05	0	0
Lead	0.05	0.01 or less	0.001
Hexavalent Chromium	0.25	under 0.005	under 0.005
Nitrogen	60	11.0 - 30.9	20.3
Phosphorus	8	0.07 - 1.13	0.52

< Air Pollution Data (Discharged) >

y in t endien 2 and (2 ioenia. god) ?				
Substance	Facilities	Regulated Values	Results	Average
NOx	Gas Turbine	70	18 - 34	21.5
NUX	Heat Treatment	180	36 - 45	40.5
	Gas Turbine	0.05	under 0.01	under 0.01
Particulates	Heat Treatment	0.2	0.02 or less	0.02
Farticulates	Aluminum Melting Furnace	0.2	under 0.01	under 0.01
Chlorine	Aluminum Melting Furnace	10	under 1	under 1
Hydrogen Chloride	Aluminum Melting Furnace	20	under 5	under 5
Fluoride/Hydrogen Fluoride	Aluminum Melting Furnace	1	under 0.2	under 0.2

A History of Suzuki's Environmental Activities

Suzuki's Environmental Chronology

1970	March	Ten CARRY Van electric vehicles are used at the Osaka World's Fair Exhibition.
1971	July	The Environmental Protection Section is established within the Facilities Group of the Production Engineer- ing Department as a section dedicated to environmen- tal measures regarding production processes.
1977	April	Suzuki Group Safety, Hygiene and Pollution Issues Council is established.
1978	December	CARRY Van electric vehicle is developed.
1981	December	Symposium on Energy Conservation is held, spon- sored by the Machinery Industry Fostering and Promot- ing Foundation (the current Suzuki Foundation).
1989	August	The Environmental Protection Council is established to strengthen the corporate-wide commitment to environ- mental issues, including products.
1990	March	Freon collectors are installed at distributors nationwide. Collection and recycling of specified Freon used for car air conditioners begins.
1991	December	Use of specified Freon for foaming (urethane form for seats, etc.) is abolished.
	January	The listing of the types of resinous materials used is begun.
	-	The SCVT, continuously variable transmission is devel- oped. (Mounted on a Cultus Convertible.)
1992	October	A natural gas powered scooter is developed.
1002	November	The Waste Countermeasure Group is established within the Production Engineering Department in order to reduce the volume of waste and to promote recy- cling.
	December	The Alto electric vehicle and Every electric vehicle are introduced.
	March	The "Environmental Protection Activities Plan" is estab- lished.
1993	Мау	The Environmental Protection Section and the Waste Countermeasure Group are unified to form the Envi- ronmental Industrial Waste Group.
	December	The replacement of car air conditioner refrigerant with a Freon substitute is completed.
	June	The collection and recycling of waste bumpers from distributors is begun.
1994	August	A facility is installed to recycle sludge contained in water discharge from the painting process, for reuse as asphalt sheet.
		Recycling of waste sand at a casting plant as cement material is begun.
1995	January	Waste incinerators are renewed and reduction in the volume of waste and use of discharged heat (steam) are expanded.
	August	Co-generation facilities are introduced at the Kosai Plant to promote the reduction of energy.
	April	The electric power-assist bicycle "LOVE" is introduced.
1996	May	The "Environmental Protection Action Plan (Follow Up Version)" is established
	December	Co-generation facilities are introduced at the Sagara Plant.
	March	A Wagon R mini vehicle which uses natural gas as fuel is developed.
1997	May	Greatly improved Alto electric vehicles and Every elec- tric vehicles are introduced.
	October	Four-stroke outboard motor receives the "Technical Innovation Award" at the Chicago Boat Show.
	December	Manual for the Disassembly of Vehicles is prepared and distributed to distributors.
	February	Co-generation facilities are introduced at the Osuka Plant.
1998		An Initiative Voluntary Action Plan for the Recycling of Used Automobiles is established.
	April	Magyar Suzuki, a plant in Hungary, gains ISO14001 certification. The Kosai Plant gains ISO14001 certification.
	July	THE RUSAL FIAIL YAINS ISO 14001 CERTIFICATION.

1998	October	A mini vehicle equipped with a lean burn engine, the "LEV" is introduced.	
		For the second time in two years, a four-stroke out- board motor receives the "Technical Innovation Award" at the Chicago Boat Show.	
	December	An environmentally friendly pipe bending process is developed.	
	March	A new catalyst for motorcycles is developed. (Mounted on the "LET's II" scooter)	
		A turbocharged Alto, the "Alto Épo Turbo" is introduced.	
	May	A highly fuel efficient Alto, utilizing an "Sc Lean Burn" and CVT is introduced.	
	June	A Wagon R vehicle powered by natural gas (CNG) is introduced.	
	August	A new model Every electric vehicle is introduced.	
	September	The Osuka Plant and Sagara Plant gain ISO14001 cer- tification.	
4000		An Alto equipped with the idling stop system is intro- duced.	
1999	October	"Suzuki Pu-3 Commuter" receives special award for "The Best Concept Car" at the Tokyo Motor Show.	
		Electric power-assist bicycle "LOVE" series undergoes full model change.	
		Maruti Udyog Ltd. in India gains ISO14001 certification.	
	November	Environmentally friendly table top industrial washers, the "SUC-300H, 600H" are introduced that cleanse using ultra sonic waves in place of organic solvents.	
	December	The "Every natural gas (CNG) powered bicycle" is introduced.	
		Four-stroke outboard motors that deliver quiet opera- tion and low vibration, the "DF25" and "DF30" are intro- duced.	
	January	Compact bumper crushing machine is developed.	
	February	Suzuki Motor Espana S.A. in Spain gains ISO14001 certification.	
	June	Cami Automotive Inc. in Canada gains ISO14001 certification.	
	July	Packaging for transport of Suzuki's three and four wheel, electric "Senior Car" receives the "Logistics Prize" at the 2000 Japan Packing Contest.	
2000	October	Electric Assist bicycle "LOVE" series undergoes full model change.	
	November	Packaging for transport of Suzuki's three and four wheel, electric "Senior Car" receives the "World Star" prize at the World Packaging Contest.	
	December	Big four-stroke outboard motors that deliver quiet oper- ation and low vibration, the "DF90" and "DF115" are introduced.	
		The Toyokawa Plant gains ISO14001 certification.	
	January	Lead is eliminated from the painting process in domes- tic motor cycle and automobile plants. The installation of bumper crushing machines in Japan	
2001	March	is expanded.	
	April	The Environment Planning Department is established to take responsibility for environmental problems related to technology, products, manufacturing, distri- bution, etc.	
		Replacing the Environmental Issues Council, the Envi- ronmental Committee is established to strengthen envi- ronmental efforts.	
	August	The amount of reclaimed waste is greatly reduced and our Zero Level goal is achieved.	
	October	Collaboration is begun with GM in fuel cell technology.	
2002	January	"Covie" receives the "Environmental Award of the Con- cept Car of the Year" from Automotive News at the Detroit Motor Show.	

Company Overview

٠

- ◆ Company Name: SUZUKI MOTOR CORPORATION
- Established:

March, 1920

- ◆ Paid-up Capital: 119,736 million yen (end of March, 2002)
- Chairman & CEO: Osamu Suzuki
- ◆ President & COO: Masao Toda
- ◆ Employees: 14,260 (As of April 1, 2002)
- ♦ Net Sales: 1,668,300 million yen (Consolidated) 1,320,200 million yen (Non-consolidated) (Fiscal 2001)
- Main Product Line: Automobiles, motorcycles, outboard motors, generators, multipurpose engines, electric vehicles, and homes.

Head Office/Plants/Branch Offices:			
Head Office &			
Takatsuka Plant:	Hamamatsu, Shizuoka Pref.		
Kosai Plant:	Kosai, Shizuoka Pref.		
Iwata Plant:	Iwata, Shizuoka Pref.		
Toyokawa Plant:	Toyokawa, Aichi Pref.		
Osuka Plant:	Ogasa-gun, Shizuoka Pref.		
Sagara Plant:	Haibara-gun, Shizuoka Pref.		
Tokyo Branch Office:	Minato, Tokyo		
Yokohama R&D:	Yokohama, Kanagawa Pref.		
Miyakoda R&D:	Hamamatsu, Shizuoka Pref.		

For all inquiries, please contact

SUZUKI MOTOR CORPORATION Environment Planning Department

300 TAKATSUKA, HAMAMATSU, JAPAN FAX : 81-53-440-2457

Published: September, 2002

This report is also available on our homepage. http://www.globalsuzuki.com/

SUZUKI MOTOR CORPORATION 300 TAKATSUKA, HAMAMATSU, JAPAN