

2001 SUZUKI ENVIRONMENTAL REPORT

This report is an English translation of the original Japanese text of Suzuki's Environmental Report. It contains information regarding Suzuki's environmental conservation activities carried out in fiscal 2000 (April 2000 to March 2001). Unless otherwise mentioned, the text mainly refers to Suzuki's domestic environmental conservation activities, vehicles, and markets, as well as Japanese laws and regulations. Also, unless the related company or dealer, etc. is mentioned, the text refers to the SUZUKI MOTOR CORPORATION only.

Also, the activities prior to fiscal 2000 and in early fiscal 2001 that are mentioned in this report have been included because they relate to applicable subjects in the report.

Contents

Introduction	
Environmental Management	3
Company Creed	
Suzuki Global Environment	Charter 3
Environmental Organization	n5
Environmental Accounting	System 6
Gaining ISO14001 Certifica	ntion6
Environmental Inspection.	
Environmental Education	
LCA (Life Cycle Assessmer	nt) 8
Results of Environmental P	Performance in Fiscal 2000 9
Reducing Pressure on the E	nvironment 10
Design and Development	Automobiles 10
	Motorcycles20
	Marine and Power Products 23
Manufacturing and Purchas	sing25
Distribution	
Sales and Service	
Management, General	
Social Contributions	36
Environmental Data	39
A List of Vehicles That Mee	et with Green Acquisition Laws 39
The Number of Low Polluti	on Vehicles Produced40
A List of Low Exhaust Emis Vehicles that were Deliver	sion ed to the Market40
	w Products
Plant Site Environmental D	ata 46
A History of Suzuki's Enviro	nmental Activities 49
Company Overview	50
Questionnaire	51

Introduction

20th Century advances in both our civilization and the sciences has provided mankind with a very comfortable and convenient lifestyle while providing the driving force of our present society. But now that we have entered the 21st Century, the results of this rapid expansion of our civilization and the sciences are showing its effects on the earth and its environment.

The world's economic growth in the 20th Century created a disparity in manufacturing, consumption, and disposal, causing the global environmental problems that we face today. As the global community's view on the environment has changed, our civilization has implemented new laws and regulations that reflect the great need to protect our environment. These laws and regulations encourage development that is harmonious with our environment and a revolution in the methods and manners of manufacturing.

While the automobile quickly became an indispensable tool in both our daily life and commerce, it has also become one of the greatest contributors to the environmental problems we face. It is for this reason that restrictions placed on automobiles are strict.

"Environmental Consideration", the prevailing theme heard in the last part of the 20th Century, has changed to "Environmental Conservation" as we moved into the 21st Century. And the call for Environmental Conservation has gained in strength all over the world. This movement requires that the corporate community takes active measures to protect the environment, so as responsible members of the global corporate community, we, and our affiliated companies, are working to strengthen our environmental responsibilities to become a corporation that functions in harmony with the environment.

At Suzuki, our philosophy on issues concerning both manufacturing and environmental responsibility are summed up into the simple concept of "Smaller, Fewer, Lighter, Shorter, and Neater." From the standpoint of environmental responsibility, this means "Smaller", "Fewer" and "Lighter" influences on the environment, "Shorter" terms in which we can achieve goals set for environmental measures, and keep a "Neater" global environment.

Adopted by our management and put into practice in as timely a manner as possible, this philosophy has been put into practice throughout our entire corporation and we are continually working to meet and advance upon these challenges.

Our environmental policy for the new century is mapped out within this "2001 Suzuki Environmental Report". We are pleased if this report helps you gain a deeper understanding of our environmental challenges. We are looking forward to your comments.

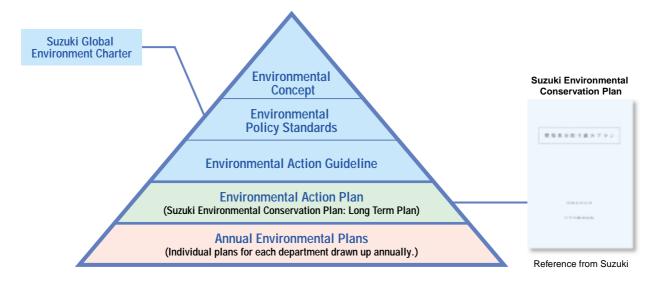
Osamu Suzuki

Chairman & CEO

Masao Toda

President/COO/Environmental Committee Chairman

Environmental Management


As a general manufacturer of automobiles, motorcycles, marine and power products, etc., we make every effort to protect the environment in every phase of our corporate activities—from product development to manufacturing, distribution, and disposal. To further advance the effectiveness of our environmental management in the 21st century, we established a new environment planning department in April of 2001, which operates according to the "Suzuki Global Environment Charter" that was newly created after a complete reassessment of our "Standard Concepts on Environmental Problems" (established in March, 1993). This charter represents our standard concept in regard to environmental conservation. Based on these concepts we have given greater thought to environmental conservation.

Company Creed

- 1. To produce consumer oriented products of value.
- 2. To Maintain vigor of the company with a cooperative spirit.
- 3. To strive for individual advancement with objectives.

Suzuki Global Environment Charter

■ Illustrating the Concepts of our Environmental Policy

Environmental Concepts

To pass on to the next generation a clean environment and bountiful society, we all must realize that the actions of each and every one of us have a great effect on our earth's future, so we must make every effort to preserve our environment.

Environmental Policy Standards

As greater priority is being given to global environmental conservation within our management, we have determined that the following environmental policies that are aimed at a sustainable society, have the greatest potential for allowing our society to develop further and to advance environmental conservation in regard to our business activities and our products.

- z Maintain and improve upon our environmental management system.
- old x Strictly observe environmental laws and follow our own standards.
- C Reduce the pressure placed on the environment resulting from business activities and products.
- Promote environmental communication.

Environmental Action Guidelines

Understanding that all business related activities as well as the products we produce have an impact on our local community and on the global environment, we put forth the following action guidelines that place emphasis on the environment.

Environmentally Friendly Business Management

- z Continuously improve upon our environmental management system.
- × Promote environmental organization activities.
- c Maintain an emergency system.

Develop Environmentally Friendly Products

- z Improve fuel economy.
- × Reduce exhaust emissions.
- C Develop automobiles that use clean energy.
- ✓ Promote the three Rs (Reduction, Re-Use, and Recycle).
- b Manage/reduce those materials that place a burden on the environment.
- n Reduce noise.
- m Develop Intelligent Transportation Systems (ITS).

Environmentally Friendly Manufacturing

- z Consider the environment at all of our corporate sites.
- × Prevent pollution.
- C Promote energy reduction and the use of alternative energy.
- Manage/reduce those materials that put stress on the environment.
- b Promote the three Rs (Reduce, Reuse, and Recycle).
- n Promote "Green" procurement.

Environmentally Friendly Distribution

- z Efficient transportation and logistics, and reducing energy consumption.
- × Promote the three Rs (Reduce, Reuse, and Recycle).
- C Promoting the use of low emission transport.

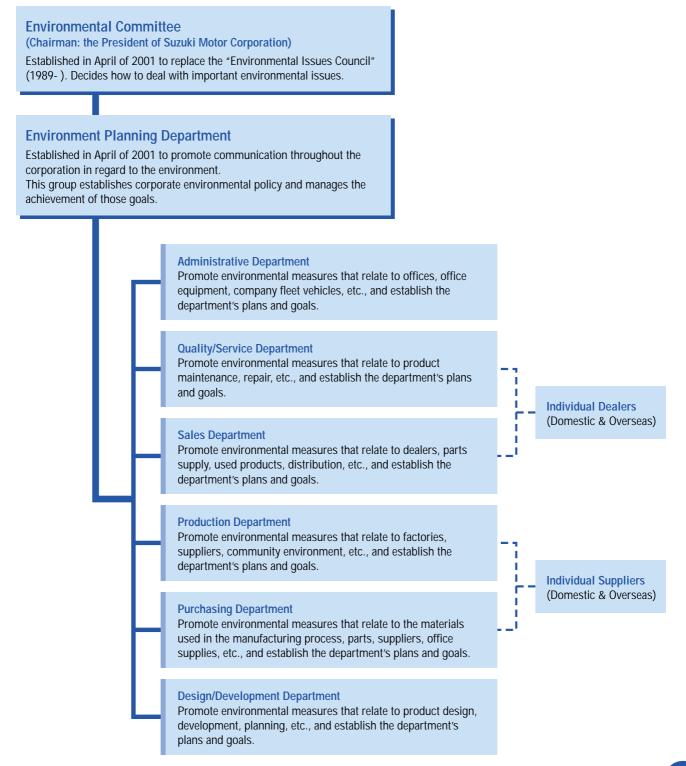
Environmentally Friendly Marketing

- z Promoting environmental management among our distributors.
- × Suitable management of used products.
- C Promote the three Rs (Reduction, Re-Use, and Recycle).

Environmentally Friendly Offices

- z Promote energy reduction.
- \boldsymbol{x} Promote purchase and use of "Green" products.
- C Promote the three Rs (Reduction, Re-Use, and Recycle).

Environmental Education and Information Disclosure

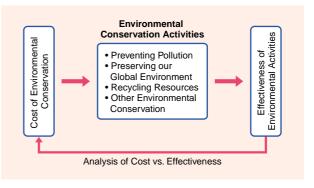

- z Provide our employees with environmental education to increase their awareness.
- \boldsymbol{x} Promote and contribute to community activities.
- C Disseminate information regarding the environment.

Environmental Action Plans

The "Suzuki Environmental Conservation Plan" clearly defines goals to be achieved in the future. Progress on the attainment of these goals and reassessment of these plans will be carried out on a regular basis.

Environmental Organization

In August of 1989, an "Environmental Issues Council" was established that would oversee the corporations environmental conservation plans. In April of 2001, a special "Environment Planning Department" was created to further promote the environment throughout the entire corporation. The "Environmental Committee" was also established to take over the functions of the former "Environmental Issues Council". At present, special projects that promote environmental conservation are organized under this "Environmental Committee" whenever needed.



Environmental Accounting System

Environmental accounting makes it possible to manage the cost of environmental conservation and analyze its cost effectiveness. It also allows us to promote effective environmental investments through sound decisions. Using less energy, resources, and waste in the manufacturing process while maintaining a high level of performance in our products requires greater environmental efficiency. For this, it is both necessary and important to physically manage energy, resources, and waste, plus comprehend and manage the cost of environmental conservation, etc. This section explains our own Environmental Accounting System, which is based on the "Establishing an Environmental Accounting System" report by the Japanese Ministry of the Environment (Year 2000 Report).

In addition to the cost of environmental conservation, we have also calculated the effectiveness of our environmental programs in this report. The economic effects have been indicated as a numerical value and used to calculate the effects of environmental activities to the best of our capabilities.

(Unit: ¥100.000.000)

< Cost of Environ	mental Conservation >
(Unit: Fiscal Year)	

Classification	Fiscal 1999	Fiscal 2000
Cost Within the Corporation	24.0	23.4
(Breakdown) Pollution Prevention Environmental Conservation Recycling of Resources	(9.1) (7.7) (7.3)	(7.7) (8.3) (7.4)
Cost of the upstream and downstream	0.8	0.3
Cost of Managerial Activities	6.8	6.9
Cost of Research and Development	117.7	140.1
Cost of Social Activities	1.1	2.0
Cost of Environmental Damage	0.3	0.3
Total	150.7	173.0

(Note) • Since some figures were rounded off, they may not agree with the total.
 • These are in-house environmental figures.

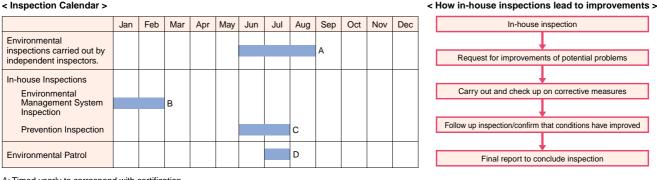
Gaining IS014001 Certification

Domestic Plants				
Plant Name	Date of ISO14001 Certification			
Kosai Plant	July 1998			
Osuka Plant	September 1999			
Sagara Plant	September 1999			
Toyokawa Plant	December 2000			

Overseas Factories					
Factory Name	Date of ISO14001 Certification				
Magyar Suzuki Corporation (Hungary)	April 1988				
Maruti Udyog Ltd. (India)	November 1999				
Suzuki Spain (Spain)	February 2000				
CAMI Automotive Inc. (Canada)	June 2000				

< Effectiveness of Environmental Conserv	ation >
(Compared to the previous fiscal year.)	(Unit: ¥100,000,000)

lte	Fiscal 1999	Fiscal 2000	
	Energy Cost Reduction	1.4	3.4
Economical Effect (Unit:¥100,000,000)	Waste Management Cost Reduction	0.2	0.2
(Unit.+100,000,000)	Resource Cost Reduction	0.3	6.1
	Total	1.8	10.0


We have provided leadership and support in the introduction of environmental management systems and acquiring ISO14001 certification within our related companies, three* of which gained certification in 2001. Also, our environmental section carries out spot investigations to check environmental conservation activities and provides guidance in making improvements at the site.

* Suzuki Hamamatsu Auto Parts Mfg. Co., Ltd., Suzuki Precision Industries Co., Ltd., Suzuki Toyama Auto Parts Mfg. Co., Ltd.

About our foreign plants, besides the four factories that have already gained certification, all overseas factories, such as our factory in Colombia, are working toward the goal of achieving ISO14001 certification.

Environmental Inspection

Environmental inspections are carried out so that we can continuously improve upon our environmental management system. The results of these inspections are reported to factory managers, and used for improvements and regular reassessment of our environmental conservation activities. A factory directors meeting is held once every two months with its location rotated among our plants. Changes to environmental conservation activities that have been implemented at the plant, matters that relate to all plants, etc., are observed, discussed, and advanced to all plants.

A: Timed yearly to correspond with certification

B: Once a year Purpose: To create an overall plant system that conforms to the environmental manual

Purpose: To create systems that prevent environmental accidents, and adherence to laws and regulations C: Once a year

D: Each factory/More than once a year

Inspections Carried Out by Independent Inspectors (Overall Inspection)

We have contracted with independent inspectors to examine documents and carry out on site examinations in regard to the validity and adequacy of our environmental management system, and determine whether measures are being carried out or not. In 2000, one case was pointed out and 19 cases were observed, then properly corrected.

In-house Inspections

We carry out two types of in-house inspections. When the inspection is carried out, we select inspectors that have no direct association with the section being inspected, and they examine whether environmental management is being properly carried out or not.

Environmental Management System Inspections (Overall Inspection)

The inspection of documents and on-site checks are used to determine whether environmental management is being properly carried out or not. In 2000, 181 cases were pointed out and properly corrected.

Preventive Inspections (limited local inspections)

The environmental management section makes on-site observations and inspections in areas that possess a potential for accidents such as drainage disposal facilities, chemical use/storage, waste disposal facilities, etc. In 2000, 124 cases were pointed out and properly corrected.

Environmental Patrol (limited local inspections)

Since our goal is to live in harmony with the people in the community, plant managers take the responsibility to carry out inspections on a regular basis in areas that possess a potential for accidents. In 2000, 270 cases were pointed out and properly corrected.

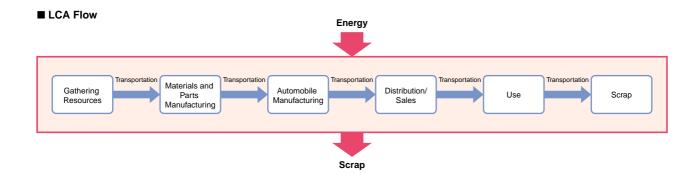
Environmental Education

To promote a deeper awareness of our environmental conservation activities, we carry out new employee education, education for individual sections within the company, and managerial education. Also, to reduce the environmental impact of accidents and emergencies, we hold emergency response drills.

Education According to Job Level

As a part of our employee education program, we have carried out environmental education programs for new employees, individual sections within the company, in-house inspectors, etc., and for managerial positions.

Also, our factories have carried out a total of 816 educational programs—786 programs for employees whose jobs deal with processes that have an impact on the environment for new employees, and executives, etc., and 30 programs covering the overall factories.


Education to Obtain Special Qualifications

In addition to those persons holding special qualifications that are required by law, we encourage the education of those employees who wish to obtain special qualifications relating to the environment. The number of those obtaining such qualifications include 178 managers for pollution prevention, 39 energy managers, 340 in-house inspectors, etc.

Please refer to the "Emergency Response Drills" section on page 29.

LCA (Life Cycle Assessment)

LCA has been developed as a tool that allows us to comprehend the burden placed on the environment from activities such as gathering resources to disposal of the product. Suzuki, along with the Japan Automobile Manufactures Association, Inc., has taken part in the development of LCA, commenced LCA projects in 2001 and is improving upon LCA development.

Results of Environmental Performance in Fiscal 2000

Design/Development

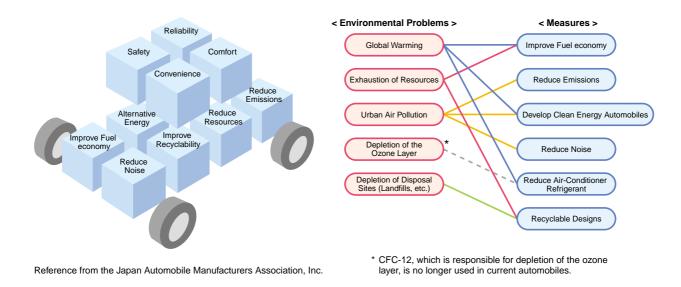
< Automobiles >

Items	Fisc	al 2000	Fiscal 2001 Goals
items	Goals	Results	FISCAI 2001 Goals
Fuel economy	 Introduce vehicles to the market that meet the 2010 standards as soon as possible. Exceed the previous year's fuel econ- omy averages in all weight categories. 	 Improved the fuel economy of our Alto, Kei, Wagon R, Wagon R Solio, and gradu- ally added vehicles that meet the 2010 standards. Exceeded the previous year's fuel econ- omy averages in all weight categories. 	As planned, introduce vehicles to the market that meet the 2010 standards.
Exhaust Gas	Offer vehicles that have excellent or good ratings for low exhaust emissions.	With the exception of models equipped with our lean burn engines, all vehicles newly introduced in 2000 received excellent or good ratings for low exhaust emissions.	Introduce to the market as soon as possi- ble, mini trucks that comply with new short term regulations.
Clean Energy Automobiles	Continue research and development of electric vehicles, fuel cell vehicles, hybrid vehicles, and natural gas vehicles.	 Developed lead battery for hybrid vehicles. Exhibited and promoted the sale of natural gas vehicles at the "21st Century Dream Technology" show. Improved circuit board technology in fuel cell vehicles and identified problems discovered from test vehicle trials. 	 Obtain registration and licensing of hybrid vehicles to conduct tests on pub- lic roads. Cooperate with General Motors in the development of fuel cell vehicles at GM's Global Alternative Propulsion Center (GAPC) In Europe.
Intelligent Transport System (ITS)	 Research and develop ASV vehicles that match the infrastructure. Collect and gather basic data from test- ing on public roads. 	 Participated in AHS-ASV experiments (6/2000-12/2000 in Tsukuba). Participated in the Smart Cruise 21 Demo 2000 (11/2000). Obtained registration and licensing from the Ministry of Land, Infrastructure and Transport and began collecting basic data (2/2001). 	Participate in the third ASV project which addresses the practical use of ASV sys- tems and development of ASV systems that match the infrastructure.
Materials with Environmental Impact	Reduce the amount of lead by 1/2 com- pared to amounts used in 1996.	Reduced the amount of lead used in all domestic vehicles to less than 1/2 (35.7%).	Reduce levels to less than 1/3 in new vehicles.
Recyclable Design	Reconsider all designs (use materials that are easy to recycle, structures that are easy to dismantle).	To improve recycling we used non-com- pound resins and structures that are easy to dismantle.	Use more non-compound materials to improve recyclability. Reassess the assembly of all parts and try to reduce the number of bolts used in assembly to make dismantling easier.

Manufacturing, Purchasing

		Fisca	Fiscal 2001 Goals		
nte	ms	Goals	Results	Fiscal 2001 Goals	
CO2 (Carbon Dioxide)			27.76 tons-CO2/100,000,000 Yen 28.13 tons-CO2/100,000,000 Yen (10% reduction compared to 1990) (9% reduction compared to 1990)		
	Landfill Waste	Less than 535 tons (Contracted with waste removal company.)	401 tons (Contracted with waste removal company.)	Less than 250 tons (99% reduction	
Waste Contracted with waste removal firm.		Less than 1,748 tons	Less than 1,136 tons		
VOC (Volatile Organic Compounds)	Approximate Emission per Area	mate 60g/sq. meter 59g/sq. meter		56g/sq. meter (34.5% reduction compared to 1995)	

Market

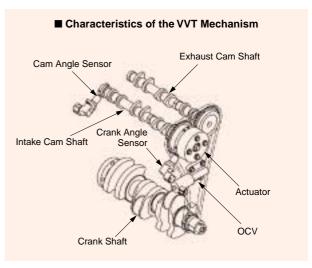

ltomo	Fisca	Finant 2004 Cools	
Items	Goals	Fiscal 2001 Goals	
Recycling	Collect and recycle used bumpers from all over Japan.	Commenced collection from Hokkaido to Kyushu (20 prefectures).	Start nationwide collection in all areas.

Reducing Pressure on the Environment

Design and Development

Automobiles

Traditionally, consumer concerns related to automobiles have been "safety", "reliability", "convenience", "comfort", etc. Recently however, these concerns have been augmented with environmentally related concerns such as "reduced emissions", "improved fuel economy", "reduced noise", "reduced resources", "improved recyclability", etc. To please the consumer on all of these concerns, we at Suzuki have raised our technological expertise in a wide range of areas.

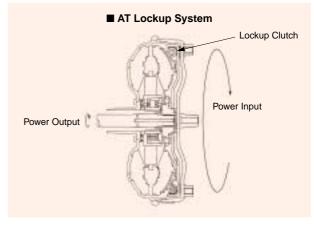

Fuel economy

Automobiles expel carbon dioxide (CO₂) in proportion to the amount of fuel that they burn. Through gradual increase in the number of automobiles that meet the 2010 Fuel Standards*, we have greatly improved fuel economy thereby reducing the amount of CO₂, reducing our reliance on resources, and prevent global warming.

* Amendment of fuel standards set in the energy reduction law (Governmental Fuel Economy Improvement Goals)

Improving the Engine

- Variable Valve Timing mechanisms (VVT) have been widely used in K-type engines found in our mini cars such as the Alto, Wagon R, etc., to achieve greater fuel economy.
- Another VVT equipped engine, new type M13A found in our Jimny Wide and Swift vehicles, utilizes a dual exhaust manifold to achieve high power output, quiet operation, and excellent fuel economy.
- Wagon R Solio vehicles not equipped with the K10A VVT engine, are equipped with a new type M13A engine like the one found in our Swift vehicles. This engine utilizes VVT and a dual exhaust manifold to achieve high power output, quiet operation and greater fuel economy.

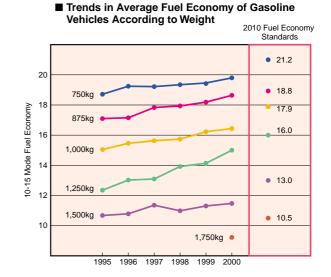

Improving the Drive Mechanism

• Automatic Transmission (AT)

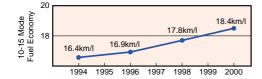
Our Escudo, Wagon R Solio, Swift, Aerio, Wagon R and Kei vehicles all utilize a torque converter with a lockup slip control to improve power transfer efficiency in the transmission.

• CVT

To achieve excellent fuel economy, our Alto and Wagon R vehicles utilize a highly efficient Continuously Variable Transmission System that does not need oil pressure.



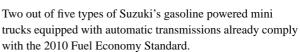
Light Bodies

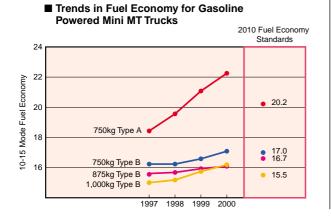

To reduce the weight of our Aerio, high-tension sheet steel, etc., is utilized in 40% (by weight ratio) of the body parts to achieve a 30kg reduction in weight.

Trends in Fuel Economy Averages According to Body Weight (Gasoline Vehicles)

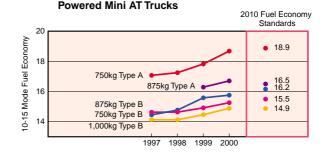
Working to meet 2010 Fuel Economy Standards, improvements in the average fuel economy of each weight category are being achieved.

- Trends in Average Fuel Economy of Our Most Popular Vehicle
 - Fuel Economy Improvements in the Wagon R 2WD-AT





Weight Category (kg)	- 750	875	1,000	1,250	1,500	1,750	2,000	2,250	2,500 -
Body Weight (kg)	- 702	703 – 827	828 – 1,015	1,016 – 1,265	1,266 – 1,515	1,516 – 1,765	1,766 – 2,015	2,016 – 2,265	2,266 –
2010 Fuel Economy Standard (km/l)	21.2	18.8	17.9	16.0	13.0	10.5	8.9	7.8	6.4


Trends in Average Fuel Economy According to Body Weight (Gasoline Trucks)

Three out of four types of Suzuki's gasoline powered mini trucks equipped with manual transmissions already comply with the 2010 Fuel Economy Standard.

■ Trends in Fuel Economy for Gasoline

< Reference: Gasoline Mini Trucks, 2010 Fuel Economy Standards (10-15 Mode Fuel Economy) >

Weight Category	(kg)	- 7	/50	875		1,000 –	
Body Weight (k	g)	- 702		703 – 827		828 –	
Body Type		Туре А	Туре В	Туре А Туре В		—	
2010 Fuel Economy	AT	18.9	16.2	16.5	15.5	14.9	Type A: Suzuki's Alto Van
Standard (km/l)	MT	20.2	17.0	18.0	16.7	15.5	Type B: Suzuki's Carry and Every mode

Exhaust Emissions

Due to an increase in vehicle ownership, the number of vehicles on the road, and heavy traffic congestion, the air quality around major metropolitan areas is in much need of improvement. Suzuki is taking an active role in improving the quality of our air through the development and introduction of "Low Emission" vehicles.

The 2000 Exhaust Emissions Standards represent a 68% reduction in exhaust emissions compared to previous regulations in 1978. By December of 2000, nearly all of our vehicles could achieve reductions greater than those set by the 2000 standards. Vehicles with emission levels that are 50% lower than those set by the 2000 standards are awarded an "Excellent-Low Emissions" rating, while those with levels that are 25% lower than the standards are awarded a "Low Emissions" rating. (See related section on page 40)

Technologies that Reduce Exhaust Emissions

VVT (Variable Valve Timing)

Optimizing intake valve timing delivers better fuel economy and power while producing low exhaust emissions.

Stainless Steel Exhaust Manifolds

Used in exhaust manifolds, stainless steel's lower heat capacity provides quicker warming of the catalyst, even when the engine is cold, to reduce exhaust emissions.

Catalyst

While improving upon its performance, attachment of the catalyst just downstream of the exhaust manifold provides for a compact layout and lower exhaust emissions when the engine is cold.

Electronic Control EGR (Exhaust Gas Return)

Redirecting a portion of the exhaust back to the combustion chamber reduces pumping-loss during the intake process and the amount of NOx exhaust due to low combustion temperatures.

Utilizing an electronic stepper motor to control the amount of EGR to the combustion chamber provides an optimum amount of EGR under any driving condition while improving fuel economy and reducing exhaust emissions due to a reduction in pumpingloss.

Clean Energy Vehicles

Clean energy vehicles, which refer to vehicles that use natural gas, electric power, methanol, hydrogen, etc., have drawn considerable attention from the viewpoint of conserving the global environment (prevent global warming by reducing CO₂) and improving the environment in cities (reducing exhaust emissions). To help in environmental conservation, we are proceeding with the development, production, and supplying of clean energy automobiles to the marketplace. (See related section on page 40)

Exhaust Emissions

< A Comparison of Clean Energy Vehicle Types >

			City Environments		Global Environments	Output	Driving Dis-		
				NOx	со/нс	Black Smoke/PM	CO2	Power	tance
Gasoline Vehicles			0	0	0	0	0	0	
Diesel Vehicles			▲-△	0		O	\bigtriangleup	O	
LPG Vehicles			0	0	0	0	\bigtriangleup	Δ-Ο	
	Natural Gas	CNG		0	0	0	O	\bigtriangleup	
	Vehicles	LNG		0	0	0	O	\bigtriangleup	
es	Methanol	Otto Type		0	0	0	0	0	
<u>č</u>	Vehicles	Diesel Type		\bigtriangleup	0	0	0	\bigtriangleup	
Vehicle	Hybrid Vehicles		Diesel: Accumulative	\triangle	0	Δ	©-☆	\bigtriangleup	©-☆
		Parallel Type	Diesel: Electric	\bigtriangleup	0	Δ	©-☆	\bigtriangleup	©-☆
nergy			Otto: Electric	○- ◎	0 - 0	0-0	©-☆	△-○	0-☆
l e		Series Type	Otto: Electric	○ - ◎	0 - 0	0-0	©-☆	△-○	O-☆
ш		Series/Parallel	Otto: Electric	○- ◎	0-0	0-0	©-☆	∆-0	O-☆
Series/Parallel Otto: Electric		☆	☆	\$	\$	Δ-Ο	▲-△		
Ū	Vehicles	Hydrogen Type		☆	\$	\$	\$	∆-0	Δ-Ο
		Methanol Refor	mer Type	☆	\$	\$	\$	Δ-Ο	Δ-Ο
		Gasoline Reform	ner Type	\$	\$	\$	☆	∆-0	0
Hydrogen Vehicles			0	☆	☆	\$	Δ		

(Note 1) Gasoline vehicles are used as a standard for comparisons in vehicle performance and equivalent performance is denoted with a ○. The amount of exhaust emissions resulting from the fuel manufacturing process is not included. (Inferior ▲ ← △ ← ○ → ◎ →☆ Excellent)

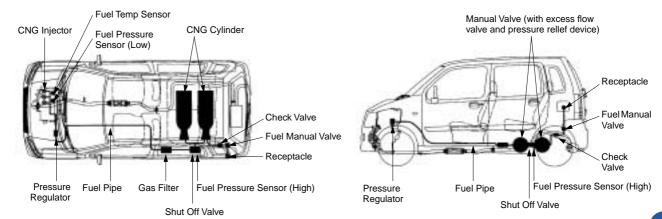
(Note 2) PM= Particulate Matter

Natural Gas Vehicles

In 1997, the "Wagon R Natural Gas Vehicle" was the first such vehicle to be introduced in the mini vehicle class. In 1999, we started selling the "Every Natural Gas Vehicle" which was top in its class* for driving distance on a

single fill up. Thorough consideration as to the placement of the CNG (Compressed Natural Gas) container in both vehicles provided the wide passenger and trunk space just as in gasoline vehicles. We are continuing with the development of natural gas vehicles with an aim to deliver lower pollution and further convenience.

* Mini Vehicle (CNG Vehicles) Class (December 1999)



Wagon R

Reference from the Japan Automobile Manufacturers Association, Inc.

Type Performance

■ Wagon R CNG System

14

Electric Vehicles

Our first electric vehicles went on the market in 1978. In August of 1999, we introduced new electric vehicles that were developed and based on newly revised mini vehicle standards. Using a new permanent-magnet type synchronous motor and a single gear transmission, the vehicle offers a driving feel close to a vehicle equipped with an automatic transmission. The vehicle's 20 batteries are stored underneath the floor of the vehicle so that luggage space can be used the same as in the gasoline version. Its maximum speed is 95km/h and it can travel approximately 110km* on a single charge.

In August 2001 we also added vehicles that are equipped with an inductive charging system (an electromagnetic charging system that has no direct electrical connection to the vehicle). Future plans call for use of systems that share ITS/CEV, etc. (See page 16)

Main Battery

* Result from in-house tests (10/15 Mode)

Every EV System

Air-Conditioner Compressor

Hybrid Vehicles

Vacuum Pump

In designing our hybrid vehicles we have focused on "better fuel economy", "lower exhaust emissions", and "quiet operation". We are working to develop a low cost system in which the motor is directly connected to the engine and relies on lead batteries, and that can be used in a variety of vehicle types. In 2001, we started testing of some of these vehicles on public roads.

EV Tire

Motor

Fuel Cell Vehicles

ΤΟΡΙCS

At Suzuki, we have long felt that the fuel cell vehicle is a strong candidate for contending with environmental problems and have made it our goal to equip mini vehicles with fuel cell technology. We feel that the fuel of choice is hydrogen but there are still many problems that must be overcome. Solutions to problems such as cost, dura-

GM and Suzuki agree to cooperate on Fuel Cell Technology (October 17, 2001)

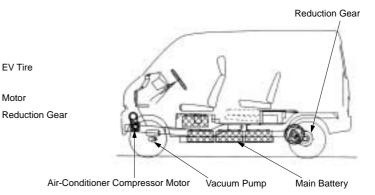
bility, recyclability, and creating a light and compact system, etc. must be found before this system can be implemented for practical use. At present, we have equipped an Every EV vehicle with a fuel cell system for testing and study.

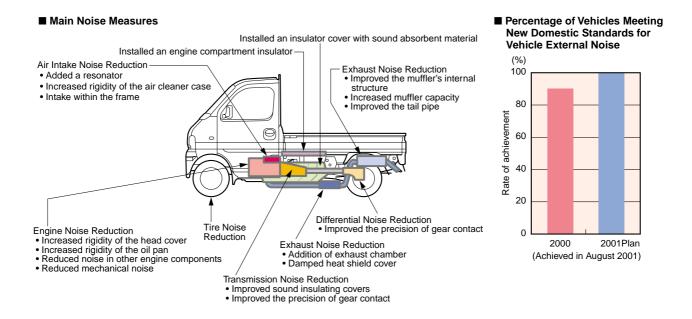
Our collaboration with the General Motors Corporation will provide development that will solve such problems.

The General Motors Corporation and Suzuki announced that they have agreed to long term cooperation in the development

of Fuel Cell Technology. The agreement focuses on the devel-

opment of fuel cell technology and fuel cell vehicles. Suzuki has

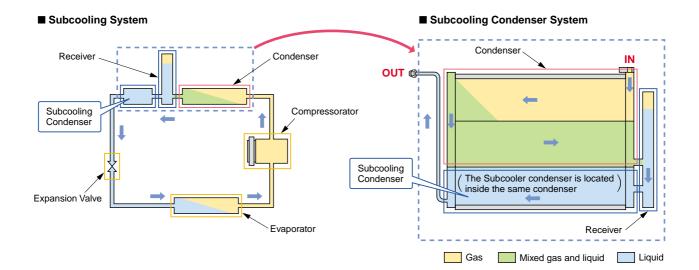

Fuel Cell Test Vehicle (Every EV)


Every EV

Noise

We are working to develop ways to reduce the amount of noise produce by vehicles.

This development is aimed at all types of vehicles including commercial vehicles. As a result, all vehicles domestically manufactured and distributed by Suzuki by August of 2001, were already in compliance with domestic regulations in regard to vehicle external noise (1998-2001 Regulations).



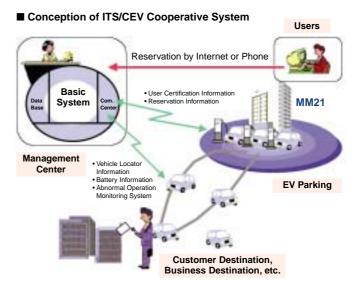
Freon (Air Conditioner Refrigerant)

In order to reduce the amount of HFC134a, a refrigerant which has been primarily blamed for global warming, we are working to develop an air-conditioning system for new vehicles that uses less of this refrigerant.

Introduced in 2000, the subcooling system utilized in the Aerio provides efficient cooling of the refrigerant allowing for a 100g reduction in refrigerant per vehicle (reduction rate: 17%) compared to the Cultus.

Development of our new type mini vehicles continues. (See page 32)

ITS*1/CEV*2 Cooperative System


Rather than rely solely on the expanded use of low pollution vehicles to cope with congested traffic, environmental pollution, and other such problems, it is important to use multi-mode traffic systems that are highly efficient and convenient, in combination with "door to door" vehicles and public transport such as railroads, buses, etc.

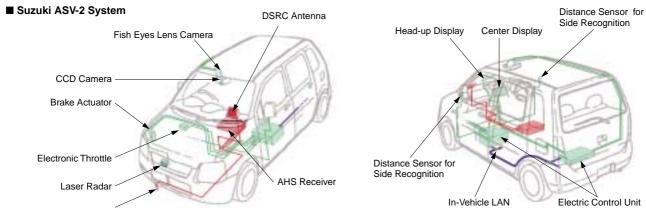
Suzuki, in association with the Association of Electronic Technology for Automobile Traffic and Driving, is working to develop a system for practical use that combines both ITS and CEV technologies. The system uses environmentally friendly low emission vehicles for local or supplemental transportation between public transport points and homes or offices as needed. (See page 14)

- *1 ITS : Intelligent Transport Systems *2 CEV : Clean Energy Vehicle

■ Cooperative System Vehicles (Every EV, Alto EV)

AHS*1/ASV*2 Project

*1 AHS : Advanced Cruise-Assist Highway System


*2 ASV : Advanced Safety Vehicles *3 ITS : Intelligent Transport Systems

ITS*3 holds great promise as the new transportation system of the 21st Century with its ability to put together people, vehicles, and roads to solve traffic problems like congestion, accidents, increased pressure on the environment, etc. The Ministry of Land, Infrastructure and Transport is developing an AHS/ASV system which consists of a new driving support service that provides communication between vehicles and road infrastructure in regard to road and traffic conditions, etc.

Suzuki is participating in the AHS/ASV project and has proposed the use of ITS vehicles with their ability to provide safety, convenience and reduced environmental impact. In February of 2001, we were the first to gain permission from the Minister of the Ministry of Land, Infrastructure, and Transport to use mini vehicles in testing on public roads.

Suzuki AHS/ASV Experiment Vehicles (Vehicles certified by the Ministry of Land, Infrastructure and Transport)

Control Point Marker Antenna

Recycling

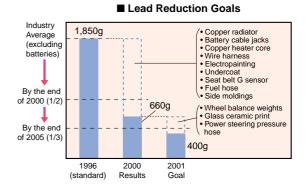
When the product comes to the end of its life cycle, recycling is an important way to obtain the most effective use of our resources, and reduce waste. Brought out in 1993, our "Guidebook for Designs that Promote Recycling" offered some guidelines in product design for making products easy to recycle. In 1998, the Japan Automobile Manufacturers Association came out with their "End-Of-Life Vehicle Voluntary Recycling Initiative" guidebook, this was followed by our own "End-Of-Life Vehicle Voluntary Recycling Initiative" guidebook, this was followed by our own "End-Of-Life Vehicle Voluntary Recycling Initiative" guidebook which strives to increase recyclable designs and reduce our reliance on materials that place a burden on the environment. We have also developed technologies that have allowed us to implement the collection and recycling of used parts from the market. (See page 32)

Reference from Suzuki

Reference from the Japan Automobile Manufacturers Association, Inc.

End-Of-Life Vehicle Voluntary Recycling Initiative

	4-181	0+///	 61
	19	Arights	
	10		
		-	
11		44-10-1	
- 31			


Reference from Suzuki

Reducing Materials with Environmental Impact

In order to reduce the materials with environmental impact, it is necessary to understand where and how much these materials are being used. To this, we made an assessment on the use of such materials in our own products to better understand the situation. Future plans will offer development of substitute materials and a reduction of materials with environmental impact.

Reducing Lead

After adopting the "End-Of-Life Vehicles Recycling Initiative" proposed by the Ministry of International Trade and Industry in 1997, the Japan Automobile Manufacturers Association established voluntary guidelines that called for reducing the amount of lead in new cars to less than 1/2 by the end of 2000, compared to the amount used in 1996. These goals also called to cut the amount to less than 1/3 by the end of 2005 (with the exception of the battery). By reassessing our goals and increasing lead reducing measures we could meet the Japan Automobile Manufacturers Association's 2000 goals. In 2000 we also put into use a lead free wire harness and a lead free electroplating process (see page 28).

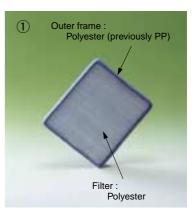
Parts already in compliance :

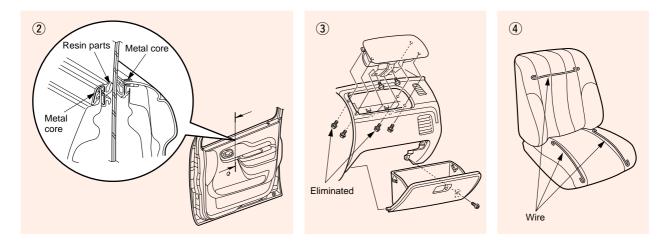
Parts currently under development : W

Copper radiator, battery cable jacks, copper heater core, wire harness, electropainting, undercoat, seat belt G sensor, fuel hose, side moldings. Wheel balance weights, fuel tank, electronic circuit boards, glass ceramic print, power steering pressure hose, other engine parts, other body parts.

ΤΟΡΙCS

Lead-Free Solder


Solder containing lead (tin 6: lead 4) is used in the Electric Control Unit (ECU) but research is underway to develop a lead-free solder that will enable us to move away from the current lead-based solder. Until recently, lead-based solders have been considered the best choice while lead-free solders suffer from problems like too high a melting point, etc. Research and development is currently underway that will lead to the development of a lead-free solder that is reliable enough for use in critical components like the ECU. At present, a lead-free solder is being used in the EMCD (Electro Magnetic Control Device) controller that is found in the Chevrolet Cruze that was introduced in November of 2001. We will continue to convert to lead-free solders as the related technologies improve.


Other Materials with Environmental Impact

In Europe, the regulation of materials with environmental impact (lead, mercury, hexavalent, cadmium) has been decided by the EU. Suzuki has already made progress in the reduction of those materials. As an example, some metal parts are finished with a hexavalent free finish which has proved to be just as durable against corrosion as the hexavalent finish.

Recyclable Designs

- ① In air-conditioners, filters made of a mixture of PP (polypropylene) and polyester have been switched to a polyester only part to improve recyclability.
- (2) In domestically manufactured vehicles, moldings found around door glass made of compound materials of mixed resins and a metal core have been switched to a resin only part to improve recyclability.
- (3) Redesigned the attachment and bolts on airbag systems to improve disassembly and recycling of the airbag.
- (4) The use of wires used to hold the urethane seat covers in place has been discontinued and an adhesive is now being used which simplifies the type of materials being used and improves the recyclability of the urethane.
- (5) Resin and rubber parts are all labeled as to their material type to improve the dismantling and recyclability of scrapped vehicles.

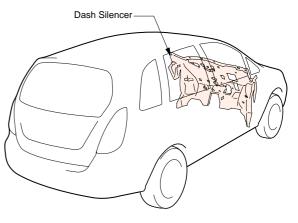
PP and ABS Materials

After increasing the number of materials made of PP, and standardizing the category and grade of these materials, we have eliminated the need for separation and made recyclable materials easier to use.

We have also started the standardization of ABS resins (acrylonitrile, butadiene, styrene)

Identification of Materials

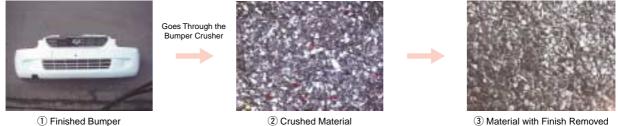
Markings based on ISO standards are used on parts to clearly identify their materials.


Recycling Materials from Other Industries

To get the most out of our limited global resources, we have pushed forward with the use of materials from industries other than the automobile industry. Presently we are using recycled PET materials and scrap pulp from the leftover cuttings in the manufacture of paper diapers as indicated in the list below.

Vehicle Name	Recycled Material	Parts	
A.14 -	Recycled PET	Dash Silencer	
Alto	Scrap Pulp	Door Trim Ornament	
Weren D	Recycled PET	Dash Silencer	
Wagon R	Scrap Pulp	Door Trim Ornament	
MR Wagon	Recycled PET	Dash Silencer	
Kei	Recycled PET	Dash Silencer	
Kei	Scrap Pulp	Door Trim Ornament	
Wagon R Solio	Recycled PET	Dash Silencer	
Wagon K Solio	Scrap Pulp	Door Trim Ornament	
Swift	Recycled PET	Dash Silencer	
Swiit	Scrap Pulp	Door Trim Ornament	
Cultus	Recycled PET (1.8 only)	Dash Silencer	
Guitus	Scrap Pulp	Door Trim Ornament	
Aerio	Recycled PET	Dash Silencer	
Escudo	Recycled PET	Dash Silencer	
(Grand Escudo)	Scrap Pulp	Door Trim Ornament	

< How Suzuki Puts Recycled Materials to Use >


Examples of the Use of Recycled PET Materials in the Aerio

Recycling Scrapped Bumpers

Bumpers and instrument panels are collected and recycled into materials that are used in battery trays, engine under covers, etc. Since removing the finish off of the bumper improves the quality of the recycled material, we are working to develop a method to remove the finish from the bumper before recycling. Once this method is developed it will allow us to recycle various materials and reuse some materials in bumpers. In the future, we are planing to utilize this method on scrapped bumpers that are acquired through the exchange of parts, etc. (See page 33)

Removing the Finish Off From the Bumper

Disposal of End-Of-Life Vehicles

Dismantling and Shredder Disposal

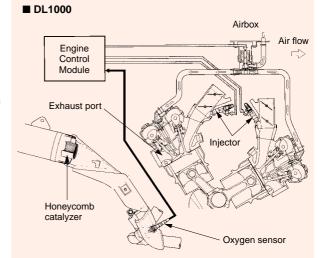
In cooperation with companies that specialize in dismantling and shredding of vehicles, we have experimented with several different methods for disposing of end-of-life vehicles. In fiscal 2001, we experimented with dismantling and shredding of the Carry.

Shredder Dust Disposal

We are working toward a reduction and recycling of 800,000 tons of shredder dust per year from vehicles in Japan plus analyzing and chemical recycling shredder dust into recycled oil.

Design and Development

Fuel Economy


On our Let's II scooter, we took a close look at port timing and the clutch, gear character, etc. to improve fuel economy and comply with domestic exhaust emissions regulations.

 $(57 \text{km/l} \rightarrow 59 \text{km/l} \text{ [at 30 \text{km/h constant speed test value]})}$

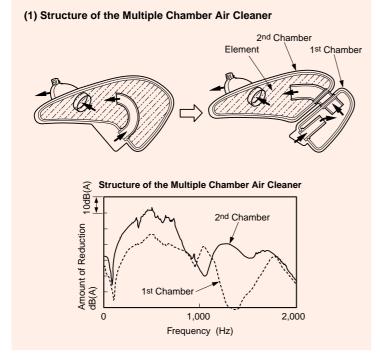
Technologies like injection systems, honeycomb catalysts, second stage air systems, O2 (oxygen) feedback systems, etc. incorporated on our big displacement, high performance motorcycles like the GSX1300R, DL1000, etc., have reduced exhaust emissions and allowed these motorcycles to comply with future European regulations ahead of schedule.

With the GSX1300R alone, we have achieved a 63% reduction in the total amount of HC exhaust and a 43% reduction of CO. (ECE R40 Mode)

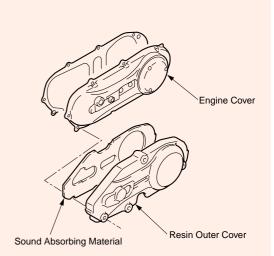
Motorcycles

Noise

To reduce engine noise on our 250cc "Sky Wave" scooter we added a rib reinforcement to increase the rigidity of the air cleaner box on the engine, improved muffler structure, and increased the accuracy of drive gear contact. (Complies with 1998 Noise Regulations)


Sky Wave

To reduce engine and exhaust noise, etc., on our 50cc "ZZ" scooter, we added a resin outer engine cover to reduce noise, added a multiple chamber air cleaner to reduce intake noise, and used a larger muffler, etc. (Complies with 1998 Noise Regulations)

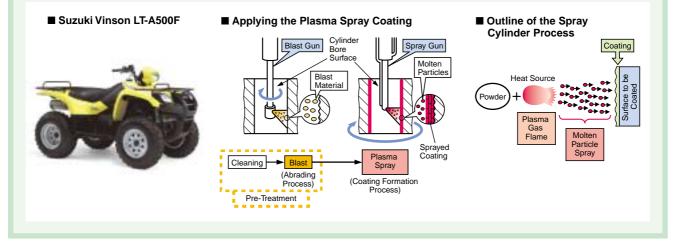


ΖZ

■ Noise Reduction on the 50cc "ZZ"

Recycling

Materials with Environmental Impact

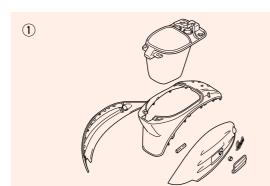

As in our automobile production, we have worked to reduce the amount of lead used in motorcycles. Lead-free components and processes currently in use are battery cable jacks, wire harnesses, electropainting (undercoating), and the fuel hose. We have also worked to reduce the use of other materials with environmental impact.

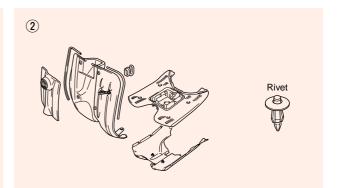
Development of technologies like plasma spray coating utilized on the cylinder wall of some of our ATV engines has also reduced the amount of materials with environmental impact used in the manufacturing process.

TOPICS

The LT-A500F Engine Utilizes Plasma Spray Cylinder Coating (June 25, 2001)

Plasma Spray Cylinder is the result of a process in which different types of materials are sprayed directly onto the cylinder block wall to produce a thin and light coating that creates a sleeve. Suzuki is the first domestic automobile manufacturer to utilize this system and this is the first time it has ever been utilized in a motorcycle or ATV engine. Compared to plated cylinders this process requires no chemicals therefore better for the environment.


Recyclable Designs

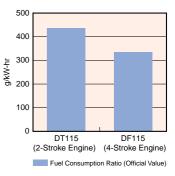

Here are some examples that have made the "Verde" scooter easier to dismantle.

- Parts are designed as an integrated unit to reduce the number of parts and improve dismantling.
- Verde

(2) The utilization of rivets has improved dismantling.

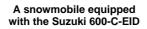
Design and Development

Marine and Power Products

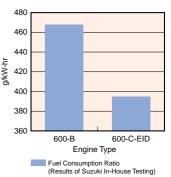

Fuel Economy

Outboard Motors

Our DF115 four-stroke outboard motor has achieved a 20% improvement in fuel economy under maximum performance conditions compared to its traditional two-stroke counterpart the DT115.


■ Fuel Consumption at Maximum Performance Levels

Snowmobiles*


The new 600-C-EID engine equipped with fuel injection has achieved an approximate 15% improvement in fuel economy compared to its carburated counterpart, the 600-B.

* Suzuki supplies engine to the Arctic Cat Corporation for use in their snowmobiles.

■ Fuel Consumption at Maximum Performance Levels

TOPICS

Development of the "Kind Chair" Wheel Chair

Introduced in April 2001, the "Kind Chair" is available as a complete powered wheelchair or as a kit that can be attached to an existing standard type wheelchair. The "Kind Chair" uses Nickel Hydrogen batteries for longer battery life, lightweight, compactness, and large capacity.

Using 20 batteries connected in a series, the system weighs 4.0kg compared to 3.6kg for a NiCad system using the same size batteries (D cell size). However, the increase in capacity, from 5Ah for NiCad to the Nickel Hydrogen's 7Ah, results in an energy density that is approximately 1.3 times greater than the NiCad system. This increases operating distance from about 7km to 10km. The battery lasts for more than 1,000 recharges making it a long lasting*, reliable system.

* According to the Suzuki Cycle Life Test Pattern.

Exhaust Emissions

Every year we release new four-stroke outboard motors that comply with the EPA* exhaust emissions regulations that have been in effect since 1998. EPA exhaust emission regulations that apply to snowmobiles come into effect on models to be released in 2007. We are currently developing engines that will comply with these new regulations.

Outboard Motors

At present, both the EPA and CARB* have HC + NOx regulations. To comply with these regulations, we have switched our outboard engines to four-stroke technology. This change in engine design has reduced exhaust emissions to less than 1/10 of that produced by a two-stroke outboard motor with the same power output.

* EPA : The U.S. Environmental Protection Agency

* CARB : California Air Resource Board

< Comparing Exhaust Emissions Regulations >	(HC+NOx: Unit (g/kW-hr)
---	-------------------------

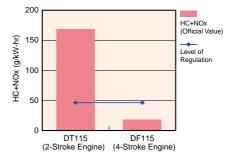
	DF115
2006 EPA (Same as the Japan Boating Industry Association's regulations)	46.3
2008 CARB	16.6

Snowmobiles

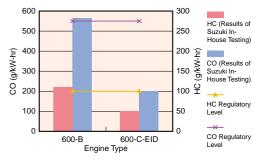
EPA exhaust emission regulations for snowmobiles will be phased in, in two steps. The utilization of fuel injection allows our two-stroke engines to comply with the phase 1 regulations while switching to four-stroke engines will allow us to comply with phase 2 regulations.

< EPA Exhaust Emission Regulations > (Proposed)

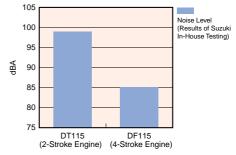
Phase	Model Year	Exhaust Regulatior	Emission n [g/kW-hr]	FEL Maximum [g/kW-hr]	
		HC	СО	HC	CO
1	2007 - 2009	100	275	150	400
2	After 2010	75	200	150	400


Noise

Outboard Motors


In addition to switching to four-stroke engine's, we have also taken a close look at the intake and exhaust systems to achieve further reductions in noise.

Comparing noise levels from idle to full power with the four-stroke DF115 and the two-stroke DT115, the four-stroke DF115 had an approximate 15dBA reduction in noise compared to the DT115.


■ 2006 EPA Exhaust Emissions Standards

EPA Phase 1 Snowmobile Emission Standards

Operating Noise Levels (Weighted calculation)

Recycling

Recycling of both outboard motors and snowmobiles is based on the particular economic market. In all of our marine and power products, we have reduced use of material with environmental impact and utilized designs derived from our automobile and motorcycle products that offer easier recycling.

Materials with Environmental Impact

Just as in automobiles and motorcycles, we are working to reduce the amount of lead that is used in our marine and power products. Earlier fuel tank designs relied on steel plated with a lead alloy. As of April 2001, we have switched to a resin tank that makes the fuel tank lead-free. Other areas in which we are working to reduce materials with environmental impact are the development of a substitute for chromic acid chromate that is used in preventing the corrosion of aluminum.

Recyclable Designs

One product that is difficult to recycle is the outboard motor. FRP (glass fiber reinforced resin) used in the outboard design is a very difficult material to recycle but we are developing a method which makes its recycling possible. Suzuki has joined with the Ministry of Land, Infrastructure and Transport's "Recycling System for the Scrapping of FRP Boats" project in the development of a system that allows the recycling of FRP boats.

Resources

Energy

Manufacturing and Purchasing

Environmental conservation in our manufacturing activities covers a wide range of activities. Reducing energy (reducing CO₂), reducing waste (recycling), control of chemical substances, green procurement, compliance with environmental emergency procedures, communicating with the community, etc., are areas related to manufacturing and purchasing that we are actively working in.

CO2

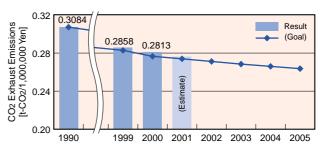
As CO₂ exhaust emissions are responsible for global warming, we are working to reduce these emissions in the manufacturing process. The goal of the Suzuki Group is by the year 2010, to reduce the amount of CO₂ emissions per sales by 20%, as compared to 1990 levels.

CO2 reduction measures that have been put into effect to this date are the use of co-generation, high efficiency air-conditioners, high efficiency compressor boilers, attaching inverters to motors on individual pump fans, insulating materials, natural lighting, etc. Through these efforts we could realize a 9% reduction in CO2 emissions per sales compared to levels in 1990.

■ Trends in and Goals for CO₂ Exhaust Emissions

Soil

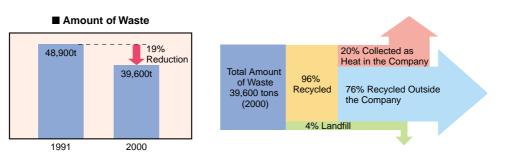
(landfill)


Air (CO2, VOC, etc.)

.

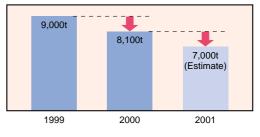
Water

(discharge)


Products

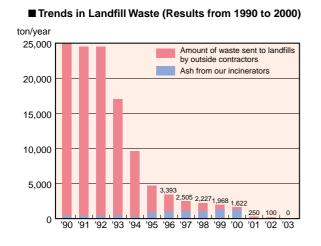
Waste

Amount of Waste

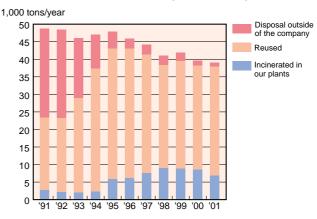

At Suzuki we are continuously working to reduce waste in all of our plants. In 1991, a total of 48,900 tons of waste was produced but by 2000 we had reduced the amount to 39,600 tons for a reduction in waste of 19%. Through utilization of the waste we could recycle about 96% of it, 20% of that being used as fuel for boilers at our Kosai plant.

Amount of Incinerated Waste

In our Kosai plant, the waste burned in our incinerators is used to produce steam (about 6 tons/h). We are also working to reduce the amount of waste that is burned in our incinerators. In 1999, we burned 9,000 tons of waste but by 2000, we could reduce the amount by 900 tons for a total of 8,100 tons. In 2001, we are planning a further reduction of 1,000 tons to bring the figure down to about 7,000 tons.


Dioxins

About our measures taken to reduce dioxins, control of the amount of O2 through strict management of our incinerators has resulted in a reduction of dioxin to 0.017ngTEQ/Nm³. This is about 1/300 of the 2002 regulatory limit of 5ngTEQ/Nm³.


Landfill Waste (Zero Level*)

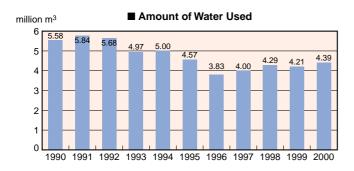
The 1,622 tons of landfill waste produced in fiscal 2000, represents a 94% reduction in landfill wastes compared to 1990. This reduction was achieved by recycling wastes from the casting process into materials for cement, and paint discharged from the paint process into damping materials that prevent vibration in car bodies, etc. By fiscal 2001, we could achieve zero emissions by converting all waste into usable material (see the TOPICS section below).

* Zero Level: A reduction of 99% in landfill wastes compared to the amount sent in 1990. Less than 1%, less than 250 tons.

■ Trends in the Amount of Waste (2001 Estimate)

ΤΟΡΙCS

Suzuki Greatly Reduces Landfill Waste to Achieve Zero Level. (August 7, 2001)

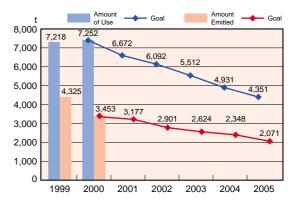

Through reductions in landfill waste at the Takatsuka plant and all domestic plants, Suzuki has achieved their zero level goal of 1% of waste compared to 1990 levels by 2001.

Waste sent to landfills from all domestic plants in 1990 totaled about 25,000t but this was drastically reduced through improvements in the manufacturing process, etc., and by separating and converting the wastes into usable materials.

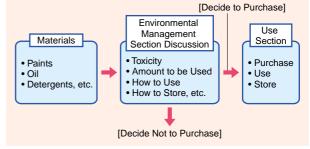

To reduce the amount of waste and make the most effective use of heat energy, all burnable waste is incinerated at the incinerator at our Kosai Plant (Kosai City, Shizuoka Prefecture) which complies with dioxin regulations. An increase in efforts to reduce waste from 2001, led to the recycling of ash produced by the incinerator into cement materials, and soot into road paving materials. This drastic reduction in the amount of waste sent to landfills resulted in a 99.5% reduction in the amount of waste being sent compared to 1990.

Water Usage and Wastewater

We are working to conserve water and reuse wastewater in order to reduce the amount of water used in our manufacturing plants. Some methods we are utilizing are airtight cooling towers, compact air-conditioners, water conserving faucets, rainwater collection, collection of water from coolers, and reuse of wastewater. Also, in regards to discharging of wastewater, we have implemented a voluntary regulation that is stricter than current laws and purify the water at a treatment plant in the factory before release.


Chemical Substances

PRTR (Pollutant Release and Transfer Register) Specified Materials


To reduce materials with environmental impact, we are working toward a 40% reduction by the end of 2005 in both the use and emission of PRTR specified materials as compared to 2000.

The number of PRTR specified materials increased from 19 in 1999 to 40 in 2000 resulting in a slight increase in the amount of materials being used to 7,252t. However, the amount of materials emitted was reduced to 3,453t which is a 20% reduction compared to 1999 figures. To achieve this reduction we changed the top coat paint to middle solids, improved the process of collecting thinner, and installed odor scrubbers on finish dryers.

■ Amount of PRTR Materials that are Used and Emitted

Management Flow for Purchasing New Substances

Purchasing New Substances

To keep the volume of substances with environmental impact to a minimum, we have curtailed the purchase of any new substances as much as possible. When the purchase of materials such as paints, oil, detergents, etc. is necessary, our environmental management section discusses the substance's toxicity, how much of it will be used, how it will be used, how it will be stored, etc., then decides whether the substance should be purchased or not. Data gained from these investigations is used and managed as PRTR data, which is then utilized when working to reduce the volume of these materials.

Substances with Environmental Impact

VOC (Volatile Organic Compounds)

VOC materials are solvents mainly used in the painting process. We are working toward reducing the amount of VOCs to 35g/m² by fiscal 2005. In fiscal 2000, through improvements in the efficiency of our electro-static painting process, the collection of paint thinners, and reducing the amount of solvents used in the paint process we could achieve a 31% reduction in the use of VOC materials compared to fiscal 1995.

We have also reduced the amount of VOC in our overseas plants. At CAMI Automotive Inc. (Canada) we could achieve a greater than 30% reduction in organic solvents by utilizing a high-solid type paint (a paint that uses less organic solvent). By also controlling the color change timing we could reduce paint waste by 21 tons and organic solvent waste by 17 tons.

At our new ATV plant (SMAC) which, is currently under construction, we will eliminate the use of organic solvents by using powder paint on the top coat.

Amount of VOC Exhaust Emissions

20

0

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

CAMI Automotive Inc. (Canada)

Specified Freon (CFC-12, CFC-22)

The use of freon (CFC-12) was abolished from our manufacturing process in order to protect the ozone layer. The specified freon (CFC-22) found in air-conditioning systems, etc., when performing repair work or disposing of these systems, is collected by licensed mechanics. Since 1969, we have utilized an absorbent type water-heater/cooler which does not use CFC-22. We are working to increase the number of these units in our plants. (Utilized at the Iwata Plant, Kosai Plant, Toyokawa Plant, our Takatsuka Plant, and the Sagara Plant)

PCB (Polychlorinated Biphenyls)

Concerning transformers and condensers that use PCBs (polychlorinated biphenyls), we have a total of 1,097 such devices in our 5 plants. 12 of these are still being used in two of our plants while the remainder of the devices, 1,085 in all, are safely stored in a secure storage facility.

Reducing the Usage of Lead

We are using a lead-free primer coat in the electro-static painting process for both motorcycles and automobiles in all of our domestic plants. Four overseas plants in four countries are currently converting to lead-free primers and by the end of 2002 seven plants in five countries will have completed the switch.

TOPICS

Suzuki Eliminates the Use of Lead in its Motorcycle and Automobile Painting Process. (January 25th, 2001)

Suzuki has eliminated the use of lead in its motorcycle and automobile painting process in all of its domestic plants. Until this change, lead chemical compounds were used in primer coat paints (electro-static painting) to provide resistance to corrosion or aid in the hardening of the paint. By moving to alternative chemical compounds and different painting techniques, the same results could be achieved without lead. The first plant to make the change was the Kosai Plant (Kosai City, Shizuoka Prefecture) in September 1999 followed by the Iwata Plant, (Iwata City, Shizuoka Prefecture) in September 2000. The Toyokawa Plant (Toyokawa City, Aichi Prefecture) was the last plant to make the change and in doing so abolished the use of lead in the painting process in all domestic plants.

Green Procurement

Even in our relationships with suppliers, we try to promote the production of products that are environmentally friendly, and purchase products and materials that have less impact on the environment. We are currently establishing "Green Procurement Guidelines", scheduled for completion by March 2002, that will be used when making purchasing decisions and evaluating the environmental management of our supplier's and other affiliated companies. We are also planning by September 2003 to create "Environmental Management Systems" for our suppliers and other affiliated companies to encourage their gaining of ISO14001 certification.

To reduce the amount of materials with environmental impact, found in materials and parts supplied to us, we are requesting that our suppliers cooperate with us, through meetings and investigation, to comply with regulations as soon as possible.

Through the exchange of information, the same movement is also taking place in our 20 manufacturing plants located in 18 overseas countries to reduce the amount of materials with environmental impact.

Communication

We regularly hold meetings with residents in the local community to ask their opinions which are used to improve our company activities. In 2000, we held six community meetings.

Environmental Incidents, Emergency Compliance, etc.

Environmental Incidents

In 2000, we had three environmental incidents. Two of the incidents were related to water quality at our Takatsuka plant and received quick response with countermeasures. The other incident involved Ca(OH)2 (calcium hydroxide), which was swept away from our water discharge disposal facility at our Iwata Plant. This incident also received a quick response with countermeasures.

We received six complaints. One concerned construction noise at our Takatsuka plant and was taken care of. The other five complaints concerned offensive odors at the Iwata Plant. We are working to improve this problem by utilizing a deodorizing tower, etc.

Environmental data for each of our plants can be found on page 46 - 48.

We are also creating environmental management systems for our overseas plants that protect against the occurrence of environmental incidents.

Organic Chlorine Chemical Compound

In regards to the two cases in which greater than regulatory levels of trichloroethylene and cis-1, 2-dichloroethylene where found in the groundwater at our Takatsuka plant in January 1999, continued treatment of the underground water and soil has reduced the level of organic chlorine compounds by over 60%.

Emergency Response Drills

Assuming that an environmental accident has the potential of occurring anywhere in the workplace we practice emergency procedures with our employees, transportation companies, etc. We also assume that in the event of an earthquake, the quake will cause a secondary disaster so we train accordingly. In 2000, we held a total of 74 emergency drills.

Environmental Conservation in the Third World

At our manufacturing plants located in third world countries, we have implemented voluntary regulations that are equal to the environmental standards and emissions standards found in Japan. We also provide technical and employee training support, and provide information on environmental conservation.

Distribution

The transport of manufactured materials, parts, and completed products is a necessary part of the manufacturing and retail business. Suzuki is working to reduce the environmental impact that is associated with distribution.

Efficient Transportation

Transporting Vehicles Within the Plant (Automobiles)

A battery powered Automatic Guided Vehicle (AGV) system allows us to move completed vehicles and parts within our plant thereby eliminating the CO₂ that would be produced from driving the completed vehicles.

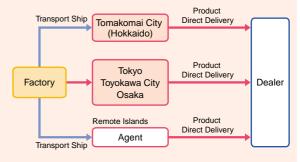
Transport by Sea (Automobiles)

We have encouraged the use of sea transport for automobiles being mainly sent to distant domestic locations. In fiscal 2000, approximately 40% of all automobiles were transported to Hokkaido, Tohoku, Chugoku, Shikoku, and Kyushu regions via ship.

With the completion of the Chiba Distribution Center in 2000, we started transporting automobiles by ship to Chiba Prefecture as well.

Compared to land transportation by truck, the utilization of sea transport produces about 25% of the CO₂ per ton. Compared to transporting everything by truck, the utilization of ship reduces the production of CO₂ by approximately 30%.

Direct Delivery System (Motorcycles)


To reduce environmental impact, we have rethought how our motorcycle distribution system works when shipping motorcycles manufactured at the plant, to the dealer.

Up to this time, transporting finished motorcycles to dealers meant having to pass through many relay and distribution points. In order to reduce energy loss and to shorten transport time, we are working to introduce a direct delivery system, from the plant to the dealer, that merges distribution points, etc., to create a more rational and efficient distribution system.

< The Number of Vehicles Delivered Directly to Dealers >

			(Unit: 1,000)
	1995 Results	2000 Results	2001 Results
Direct to Dealer	1	25	68
Pass Through Relay Point / Sales Office	165	90	38

The Motorcycle Distribution System (Merging Distribution and Relay Points)

Recycling

Packing Materials

For KD (Knock Down) shipments to overseas locations, the use of warehouses—instead of storing the goods outside—and the utilization of containers allows us to use simplified packaging, which in turn reduces the amount of materials such as wood, steel, etc., used in packaging.

Utilizing returnable racks to transport engines from Japan to our CAMI Automotive Inc. in Canada eliminated the need for packing materials.

At our ATV plant (SMAC), which starts production in 2002, the utilization of the returnable racks to transport engines from Japan will reduce packing materials by 9kg per vehicle.

Each company will change its parts delivery system to a returnable box system to reduce the need for packing materials and simplify packing.

Packing materials that are used in the delivery of parts, etc. are reused to pack completed products or spare parts.

TOPICS

The Packaging for Transport of Suzuki Senior Cars Wins the "World Start Prize" at the "World Packaging Contest" (November 1st, 2000)

The packaging for transport of our three and four wheel "Suzuki Senior Cars" won the "World Star Prize" at the "World Packaging Contest (World Star 2000)" held in Sweden (organized by the World Packaging Organization (WPO))

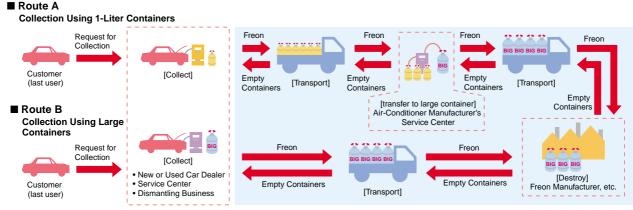
- Packaging Features that Won the Prize
 - As the package is made up entirely of cardboard it makes for an easy to recycle package and eliminates the need for wood pallets (coniferous). This system allows Suzuki to reduce the amount of wood that Senior Cars use by about 110 tons per year.
 - Compared with the older packaging, the new design offers a 12% reduction in capacity and weight. This reduces the amount of energy used for, and cost of transporting and distribution.
 - The package is easy to dismantle and remove which improves operations.

Sales and Service

The proper disposal and recycling of used products and parts that are collected in exchange for new ones is important, as is providing information related to those operations. Suzuki promotes environmental conservation in its retail and service operations, and works to achieve positive results in its activities.

Recycling, **Proper Disposal**

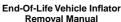
Used Parts, End-of-Life Vehicles


Collecting and Destroying Freon

The automobile industry is working to collect and destroy the CFC12 and HFC-134a, used as a refrigerant for air-conditioners, from cars that are being scrapped. From January 1994, Suzuki started collection and destruction through a non-centralized route, after which a route developed by the Japan Automobile Manufacturers Association, Inc. was also used to advance these activities. By April 2000, we had installed Freon collecting machines in all certified and designated service centers, and used car sales bases of our domestic distributors.

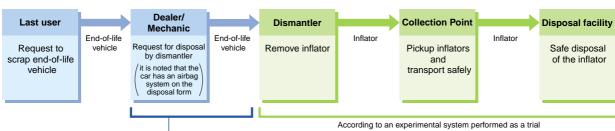
Freon Collecting Handbook

Reference from the Japan Automobile Manufacturers Association, Inc.



Reference from the Japan Automobile Manufacturers Association, Inc.

Collecting and Disposal of Air Bag Inflators*


We collect and dispose air bag inlfators since the automobile industry considers that the collection and disposal of unused air bag systems can be dangerous. From September 1999, Suzuki distributed to its dealers, a manual that fully explains the proper procedures for dismantling and handling these systems.

* Air bag inflator: This unit is used to rapidly inflate the airbag using gas generated from gunpowder and an ignition system.

Airbag Disposal System

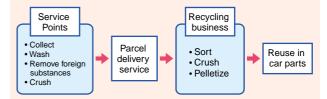
Note: Removal of the inflator can be performed at the dealer, service center, or other licensed business.

Reference from the Japan Automobile Manufacturers Association, Inc.

Reference from the Japan Automobile


Manufacturers Association, Inc.

• Collecting and Recycling Bumpers


Used bumpers that have been removed due to repair or exchange are collected and recycled. From 1994, we started collection of these bumpers in Shizuoka Prefecture and parts of the Kanto region, increasing areas until the program went nationwide in 2001. From 2000, we introduced a bumper crushing machine to improve the efficiency of collecting. (Refer to the TOPICS section below.)

	U	(as of September 2001)	
Hokkaido Region	Hokkaido	Suzuki Motor Sales Hokkaido Inc.	
Tohoku	Miyagi Prefecture	Suzuki Motor Sales Miyagi Inc.	
Region	Fukushima Prefecture	Suzuki Motor Sales Fukushima Inc.	
Kanto	Saitama Prefecture	Suzuki Motor Sales Saitama Inc.	
Region	Saltama Freiecture	Suzuki BP Center Saitama Inc.	
	Tochigi Prefecture	Suzuki Motor Sales Tochigi Inc.	
	Gunma Prefecture	Suzuki Motor Sales Gunma Inc.	
	Chiba Suzuki Motor Sales Chiba Ind		
	Tokyo	Suzuki Motor Sales Tokyo Inc.	
	Kanagawa Prefecture	Suzuki Motor Sales Kanagawa Inc.	
Chubu	Ishikawa Prefecture	Suzuki Motor Sales Hokuriku Inc.	
Region	Shizuoka Prefecture	Suzuki Motor Sales Shizuoka Inc.	
		Suzuki Motor Sales Hamamatsu Inc.	
	Aichi Prefecture	Suzuki Motor Sales Chubu Inc.	
Kinki	Mie Prefecture	Suzuki Motor Sales Mie Inc.	
Region	Nara Prefecture	Suzuki Motor Sales Nara Inc.	
	Osaka	Suzuki Motor Sales Kinki Inc.	
	Kyoto	Suzuki Motor Sales Kyoto Inc.	
	Ryoto	Suzuki BP Center Kinki Inc.	
	Hyogo Prefecture	Suzuki Motor Sales Hyogo Inc.	
Chugoku Region	Hiroshima Prefecture	Suzuki Motor Sales Hiroshima Inc.	
Shikoku Region	Kagawa Prefecture	Suzuki Motor Sales Kagawa Inc.	
Kyushu Region	Fukuoka Prefecture	Suzuki Motor Sales Fukuoka Inc.	

< Bumper collecting Areas and Collection Points >

Collecting and Recycling Used Bumpers

Note : Collecting at 23 points in 20 prefectures.

Collection in the remaining 27 prefectures will start by the end of March 2002.

ΤΟΡΙCS

Development and Application of the Bumper Crushing Machine (March 8, 2001)

In order to use our resources more effectively, we started a program in 1994 where used bumpers, removed from automobiles due to repair or exchange, are collected at our dealers for recycling. From January 2000, we introduced a newly developed bumper-crushing machine into the program to reduce the cost of transport. The recycled material is used as a new resource for new car parts.

The bumper-crushing machine is designed to accommodate bumpers of different sizes and materials thus providing a machine that is more compact and lower in cost than a regular crushing machine.

The crushing machine's compact size allows easy installation at dealer service centers, etc., and it can reduce the bumper to approximately 1/6 of its original size thereby reducing the cost of transportation.

• How Recycled Bumpers are Used

Seat under trays, battery trays, trunk room side boxes, fuel tank under covers, etc.

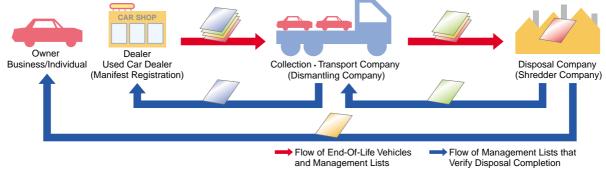
(See also page 19)

The Manifest System (End-Of-Life Vehicle Management List)

To promote the proper disposal of end-of-life vehicles, a manifest system was introduced in December 1998. This system was revised and strengthened after disposal laws were amended in April 2001. The manifest system is used to manage and check whether the dismantling and disposal of end-of-life vehicles is properly carried out or not. Suzuki has distributed pamphlets to dealers and makes regular inspections to enforce the manifest system.

End of Life Automobile Management List (Manifest) Practical Manual

Automobile Manufacturers


Association, Inc.

End of Life Motorcycle Management List (Manifest) Practical Manual

Reference from the Japan Automobile Manufacturers Association, Inc.

Reference from the Japan Automobile Manufacturers Association, Inc.

Vehicle Dismantling Information

When dismantling vehicles, Suzuki follows the manual "Removal Manual Prior to Dismantling of Automobiles and Motorcycles" put out by the Japan Automobile Manufacturers Association, and its own manual "Dismantling Manual for Automobiles", to properly dispose of end-oflife vehicles.

Also, to deal with ELV (End of Life Vehicle) laws in the EU, Suzuki, in 1999, cooperated with the IDIS (International Dismantling Information System) and provided dismantling businesses in the EU with dismantling information on CD-ROM.

Reference from Suzuki

Reference from the Japan Automobile Manufacturers Association, Inc.

Management, General

In addition to manufacturing plants, the market place, production design, and development, conservation in the office place is just as important. Conservation efforts in the office place include raising the individual's level of environmental consciousness, green procurement, saving energy and resources.

Zero Waste

Efforts to improve work efficiency in the office place started in 1985 and in 1992, the movement was named "Zero Waste Movement". Through increased work efficiency and waste reduction, our goal is to reduce the amount of energy and resources used in the office place, and recycle.

Reducing Energy and Resources, Recycling in the Office

Reducing Energy

To promote energy saving, we turn off lights, computers, and printers during the lunch break, after work, and when we are out.

Lights

By attaching a pull switch to each fluorescent light, each of us do our part by turning off lights when people are not present. In 2000, we attached pull switches in our executive offices so our executives work to save energy as well. We have also installed automatic ON-OFF devices, "Human Sensitive Sensors" in restrooms, etc., to save energy.

• Short Sleeve, No Tie

Short sleeve and no tie dress code in the summer allows us to work comfortably, even on hot days, without relying on air-conditioning. We inform our customers of our dress code and recommend that they visit our offices with short sleeves and no tie.

Reducing Resources, Recycling

We strive to achieve a paperless office through the use of computer equipment and we use recycled paper in copy machines and printers as much as possible. We even use the reverse side of paper to get the most out of each sheet as possible.

Also, we sort and collect documents, newspapers, magazines and catalogs for recycling. (2000 Results: 31,130kg)

Green Procurement

Our office paper, name cards, and catalogs all use recycled paper to reduce environmental impact. In the future we would like to increase the amount of environmentally friendly office supplies, office appliances, etc., that we use in our offices.

Introducing Low Emission Vehicles

We are currently planning to introduce low emission vehicles into our fleet of office vehicles in 2001.

Social Contributions

To interchange and work in harmony with the community, and communicate with our users, we participate in exhibitions that concern the environment and cleanup activities. We also actively support the development of new technologies that are related to the environment.

Event Participation (Exhibitions, Cleanup Activities, etc.)

Low Pollution Vehicle Exhibitions, etc.

We participated in the exhibitions below in Fiscal 2000.

Event Name	Description	Sponsor	Location	Date
Low Pollution Automobile Fair 2000	Exhibit natural gas powered vehicles	Tokyo Metropolitan Govern- ment Environmental Agency	Yoyogi Park	6/10 - 6/11
Promoting Clean Energy Automo- biles, Exhibition & Test-Drive	Exhibit and test drive of natural gas powered vehicles	NEDO*1	Asian Pacific Trade Center (Osaka)	6/23 - 6/24
CEV Test Drive in Sapporo	Exhibit and test drive of natural gas powered vehicles	METI Hokkaido*2 / NEDO	Access Sapporo (Sapporo)	8/5 - 8/6
Low Pollution Automobile Fair	Exhibit natural gas powered vehicles	Tottori-city	Tottori City Eco Station	8/7
Volunteer Festival at Banpaku	Exhibit natural gas and electric powered vehicles	Osaka-fu Suita-city	Banpaku Memorial Park	8/27
Low Pollution Automobile Fair in Osaka	Exhibit and test drive of natural gas powered vehicles	Osaka city	Asia Pacific Trade Center (Osaka)	9/22 - 9/23
Low Pollution Automobile Fair in Nagoya 2000	Exhibit and test drive of natural gas powered vehicles	Nagoya Low Pollution Automobile Fair Organizing Committee	Nagoya City Hall Shyounai-Ryokuchi	9/30 - 10/1
Low Pollution Automobile Test Drive	Test drive of natural gas powered vehicles	Odawara-city	Odawara-city Flower Garden	10/7 - 10/8
NGV2000 (The 7 th International Natural Gas Powered Automobile Meeting and Exhibition)	Exhibit natural gas powered vehicles	Japan Gas Association	Pacifico Yokohama	10/17 - 10/19
Clean Energy Festa in Osaka	Exhibit natural gas and electric powered vehicles	NEDO	Asia Pacific Trade Center (Osaka)	10/21 - 10/22
Shizuoka University Techno Festa in Hamamatsu	Exhibit and test drive of electric powered vehicles and exhibit of natural gas powered vehicles	Shizuoka University	Shizuoka University Hamamatsu Campus	November
Shizuoka Environment, Volunteer, Technology Exhibition	Exhibit of natural gas and electric powered vehicles / Exhibit and test ride of electric assist bicycle	Shizuoka Environment, Vol- unteer and Technology Exhi- bition Organizing Committee	Twin Messe Shizuoka (Shizuoka Prefecture)	11/23 - 11/25
Clean Energy Festa In Yokohama	Exhibit natural gas and electric powered vehicles	NEDO	Pacifico Yokohama	1/27 - 1/28, 2001
Clean Energy Festa in Hiroshima	Exhibit natural gas and electric powered vehicles	NEDO	Hiroshima Sun Plaza Hall	2/10 - 2/11

*1 : New Energy and Industrial Technology Development Organization

*2 : Ministry of Economic Trade and Industry, Hokkaido Bureau

NGV2000 (The 7th International Natural Gas Powered Vehicle Meeting and Exhibition)

Shizuoka University Techno Festa in Hamamatsu

Shizuoka Environment, Volunteer, Technology Exhibition

Community Environmental Cleanup

To contribute to the environmental cleanup of our community, many of our employees join community cleanup activities such as beach cleanup, riverbed cleanup, park cleanup, etc. every year.

Event Name	Description	Sponsor	Location	Date	Number of Persons Joining
		Shizuoka, Kosai			Participants: 400
	Beach Cleanup	Regional Alliance Committee	Shirasuka Beach	9/9	Participating Employees: 60
		Shizuoka, Shimada/			Participants: 250
Archinglago Clashun Compaign	Beach Cleanup	Haibara Regional Alli- ance Committee	Shizunami Beach	October	Participating Employees: 25
Archipelago Cleanup Campaign		Aichi/Higashi Mikawa	Akatsuka Yama		Participants: 150
	Park Cleanup	Regional Alliance Committee	Park	October	Participating Employees: 15
		Shizuoka, Chuuen			Participants: 200
	Curve Mirror Cleanup	Regional Alliance Committee	Fukuroi City	October	Participating Employees: 10
Archipelago Cleanup Operation	Operation #1 Hamamatsu Welkame		Nakatajima "Kite		Participants: 991
	Cleanup Operation, Beach Cleanup		Festival" Park	Мау	Participating Employees: 24
Paul and the set			Tenryu River		Participants: 745
A CAL	Operation #2 Riverbed Cleanup	"A Little Kindness" Movement, Main Office	Ryokuchi Park (Right Shore)	August	Participating Employees: 48
		Shizuoka Prefecture	Hamamatsu Castle		Participants: 500
A CALL	Operation #3 Park Cleanup		Park	October	Participating Employees: 27
			Tenryu River	March.	Participants: 480
	Operation #4 Riverbed Cleanup		Ryokuchi Park (Left Shore)	2001	Participating Employees: 45

* In addition to the activities described above, we install signs around our Head office and Takatsuka plant that remind people not to litter as a part of the "A Little Kindness" movement.

The Suzuki Foundation Contributes to Research

Every year, the Suzuki Foundation supports research related to environmental technologies. Recently we also established the "Suzuki Education and Culture Foundation" to contribute to the wholesome upbringing and education of our youth.

回法人 スズキ財団 F度 贈呈式・技術者交流会

< A list of environmental themes that promoted by the Suzuki Foundation >

Term: 1996 - 2000

No.	Research Themes	Fiscal Yea
1	Evaluating the ability of rubber chips recycled from waste tires to alleviate shocks	
2	Improving the characteristics of an ion exchange membrane for a solid high particle type fuel battery	
3	Unsteady spray characteristics and the air/fuel mixture process	
4	Enhancing the combustion of the pre-mixture under high pressure	2000
5	Analysis of an unsteady spray combustion system for the effective use of super low quality fuels	
6	Research and development into a manufacturing process using voluntary osmotic phenomenon for a compound strengthened piston used in high efficiency and high output engines	
7	High speed sintering of zirconium in a microwave for use in bulkhead fuel cells	
8	Basic research on the combustion of DME pressure ignitions system	1999
9	Analysis of the reaction system of a direct methanol fuel cell	1999
10	Researching the thermal fatigue properties in environmental friendly lead free solder	
11	Research and development into the prevention of global warming through the utilization of automobiles	
12	Increasing the efficiency of a non-toxic, non resource dependant new type Cu2ZnSnS4 type film solar battery	1998
13	Public infrastructure system to promote fuel cell automobiles	
14	Exhaust emission purification system for diesel automobiles using pulse corona discharge	
15	Researching the characteristics of the load produced by fuel batteries	1997
16	Researching the disturbance in the engine cylinder the pre-mixture combustion system	
17	Research into the development of a perfect garbage disposal machine for zero emission society]
18	Influence on NOx formation by disturbance or mixture speed in the diffusion flame	
19	Analyzing the combustion conditions of super rarefied pre-mixture pressure auto ignition system	1996
20	Purifying recycled aluminum alloy by eliminating impurities	1990
21	Analysis and research for the modeling of the combustion event in an uneven pre-mixture chamber	7

ΤΟΡΙCS

In Celebration of its 80th Anniversary, Suzuki Establishes the "Suzuki Educational and Culture Foundation" to support the education and training of youth. (July 21, 2001)

• Awarding the First Scholarships

In commemoration of its 80th Anniversary, Suzuki has established the "Suzuki Education and Culture Foundation" in October 2000, to contribute to the healthy upbringing and education of our youth. An awards ceremony was held on July 21, 2001, to give out the first scholarships to ten students.

After celebrating its 80th Anniversary in March 2000, Suzuki announced in May, 2000, that the foundation would be established. Working to setup the foundation as soon as possible, they gained permission for the Shizuoka Prefectural Board of Education on October 12, 2000, which finalized formal establishment of the foundation. The Suzuki Group provided funding for the foundation with a ¥510,000,000 donation. Osamu Suzuki, Chairman & CEO of the Suzuki Motor Corporation, assumed the position of Chief Executive Officer and the foundation is located at Suzuki's headquarters in Hamamatsu-City.

This is the second foundation to be established by Suzuki. The first, the "Suzuki Foundation", was established in commemoration of Suzuki's 60th Anniversary in 1980, to support research related to technology in both domestic and overseas universities (as of April 1, 2000 the foundation's total assets were $\frac{1}{2},911,000,000$).

Environmental Data

A List of Vehicles That Meet with Green Acquisition Laws

(As of March, 2001)

Model	Vehicle Type	Engine	Displacement (L)	Drive System	Transmission	Low Emission Level (See note)	Regulations Adopted	Comment
	LA-HA23S	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	3 Door
	LA-HA23S	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
Alto	LA-HA23S	K6A	0.658	2WD	3AT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-HA23S	K6A	0.658	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-HA23S	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-MC22S	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-MC22S	K6A	0.658	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
Wagon R	LA-MC22S	K6A	0.658	2WD	4AT Column	Excellent	2010 Fuel Economy Standard	5 Door
wagon R	LA-MC22S	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
	TA-MC22S	K6A	0.658	2WD	5MT	Good	2010 Fuel Economy Standard	5 Door
	TA-MC22S	K6A	0.658	4WD	5MT	Good	2010 Fuel Economy Standard	5 Door

< Mini Passenger Cars >

< Passenger Cars >

Model	Vehicle Type	Engine	Displacement (L)	Drive System	Transmission	Low Emission Level (See note)	Regulations Adopted	Comment
Wagon R	LA-MA64S	K10A	0.996	2WD	4AT Column	Excellent	2010 Fuel Economy Standard	5 Door
Solio	LA-MA64S	K10A	0.996	4WD	4AT Column	Excellent	2010 Fuel Economy Standard	5 Door
	LA-RB21S	M15A	1.49	2WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door
Aerio	LA-RB21S	M15A	1.49	2WD	4AT	Excellent	2010 Fuel Economy Standard	5 Door
	LA-RB21S	M15A	1.49	4WD	5MT	Excellent	2010 Fuel Economy Standard	5 Door

< Mini Commercial Vehicles >

Model	Vehicle Type	Engine	Displacement (L)	Drive System	Transmission	Low Emission Level (See note)	Regulations Adopted	Comment
	LE-HA23V	K6A	0.658	2WD	5MT	Excellent	2010 Fuel Economy Standard	3 Door
Alto	LE-HA23V	K6A	0.658	2WD	3AT	Excellent	2010 Fuel Economy Standard	3 Door
	LE-HA23V	K6A	0.658	4WD	5MT	Excellent	2010 Fuel Economy Standard	3 Door

< Clean Energy Vehicles >

Model	Vehicle Type	Engine	Displacement (L)	Drive System	Transmission	Standards Judged By	Comment
Every	GD-DA52V (improved) MEV40K		—	2WD	AT	Low Pollution Vehicles	Electric Vehicle
Wagon R	LA-MC22S K6A (improved) (improved)		0.658	2WD	AT	Low Pollution Vehicles	Natural Gas Vehicle
Freeze	GD-DA52V (improved)	F6A (improved)	0.657	2WD	MT, AT	Low Pollution Vehicles	Natural Gas Vehicle
Every	GDDB52V (improved)	F6A (improved)	0.657	4WD	МТ	Low Pollution Vehicles	Natural Gas Vehicle

(NOTE) Exhaust Emission Levels

 Good:
 A 25% reduction compared to 2000 standards

 Excellent:
 A 50% reduction compared to 2000 standards

 Ultra:
 A 75% reduction compared to 2000 standards

Standards

Ministry of the Environment: Green Acquisition Law Standard

The Number of Low Pollution Vehicles Produced

(Actual results in fiscal 2000)

Suzuki is developing low pollution vehicles that utilize advanced environmental technologies reached a little over 92,000 units. The volume of shipments of the low pollution vehicles* reached in 2000. We feel we have contributed to environmental conservation.

* Including OEM

< Shipment Results i	n 2000 >			Including OEM	- denotes that	there are no eq	uivalent models
		Automol	piles	Truck	(Bus	Total
		Regular/Compact	Mini Vehicles	Regular/Compact	Mini Vehicles	Bus	Iotai
Low Pollution	Electric Vehicles	—	—	_	11	—	11
Vehicles	Natural Gas Vehicles	—	30	—	29	—	59
Low Fuel Economy	**	8,528	64,850	_	16,142	—	89,520
and Low Exhaust Emission Certified Vehicles	\$	0	2,651	_	0	_	2,651
Total		8,528	67,531	_	16,182	_	92,241

These vehicles have achieved early conformity to fuel economy standards based on the Law concerning the Rational Use of Energy, and are certified as low exhaust emission gas vehicles based on low exhaust emission gas vehicle certification implementation guide lines.

· Vehicles with low exhaust gas certification

端合金 Will row Low Emission Gas): A 75% reduction compared to 2000 exhaust gas standards ☆☆ (Excellent-Low Emission Gas): A 50% reduction compared to 2000 exhaust gas standards ☆ (Good-Low Emission Gas): A 25% reduction compared to 2000 exhaust gas standards

A List of Low Exhaust Emission Vehicles that were Delivered to the Market

(Actual results in fiscal 2000)

Vehicles with improved exhaust emission performance shown in the table below, were introduced into the market by Suzuki in 2000.

Model	Excellent-Low Emission Gas Vehicle	Good-Low Emission Gas Vehicle
Alto	1 Type	
Wagon R	1 Type	2 Types
Jimny		1 Type
Jimny Wide		1 Type
Wagon R Solio	2 Types	
Aerio	1 Type	
Total	5 Types	4 Types

Environmental Data for New Products

(Actual results in fiscal 2000)

Automobiles

		Vehicle Name	•		Every Wagon		Kei			Wagon R		Jimny		Alto	
Date	e Sale	es Began			2000.5.17		2000.10.12			2000.12.5		2001.2.15		2001.2.15	
	Vehic	le Type			GF-DA52W	GF-HN11S	GF-H	IN21S	LA-MC22S	TA-MC12S	TA-MC22S	TA-JB23W	LA-H	A23S	GF-HA22
		Model			F6A	F6A	K6A	K6A	K6A	F6A	K6A	K6A		K6A	
<u>,</u>		Displacement	(L)		657	657	658	658	658	657	658	658		658	
specifications	Engine	Туре			In-Line 3-Cylinder SOHC 6Valve Intercooler Turbo	In-Line 3-Cylinder SOHC 6Valve Intercooler Turbo	In-Line 3-Cylinder DOHC 12 Valve VVT	In-Line 3-Cylinder DOHC 12Valve Intercooler Turbo	In-Line 3-Cylinder DOHC 12 Valve VVT	In-Line 3-Cylinder SOHC 6Valve Intercooler Turbo	In-Line 3-Cylinder DOHC 12Valve Intercooler Turbo	In-Line 3-Cylinder DOHC 12Valve Intercooler Turbo	In-Line 3-Cylinder DOHC 12Valve	In-Line 3-Cylinder DOHC 12 Valve VVT	In-Line 3-Cylinde DOHC 12-Valve Lean Bur
		Fuel Type							U	nleaded Regu	lar				
		Fuel System								EPi					
	ain	Drive System			2WD/4WD	2WD/4WD	2WD	2WD/4WD	2WD/4WD	2WD/4WD	2WD/4WD	2WD/4WD	2WD/4WD	2WD/4WD	2WD
	Drive Train	T		мт	5MT	5MT	5MT	5MT	5MT	_	5MT	5MT	5MT	_	5MT
	Dri	Transmission		AT	4AT	4AT	4AT	4AT	4AT, CVT	4AT	4AT	4AT	3AT	4AT	CVT
)		мт	890-940	750-790	730	760-800	780-830	_	810-860	940-980	650-730	_	680
vei	ight (k	(g)		AT	910-960	770-810	740	770-810	790-840	820-870	820-870	950-990	660-740	720-770	700
la>	ximun	n Load Capacity	ad Capacity (kg)				_	-							
	Fuel Consumption Rate	*10 • 15 Mode Economy (km		мт	17.0	20.5	22.5	19.8	19.4-22.5	_	18.8-19.4	16.4	20.5-23.0	—	30.0
	onsum Rate	Leonomy (kin	//)	AT	14.6-15.0	17.8	19.2	17.0-18.2	16.8-21.0	16.8-17.4	16.4-18.0	14.8	17.0-19.4	18.2-19.6	27.0
	Co R	CO ₂ Emission	ns (g/km	I)	139-162	115-133	105-123	119-139	105-140	136	122-144	144-159	103-139	120-130	79-87
	Fuel	2010 Fuel Eco Standard Ach							Achieved*	Achieved	Achieved*		Achieved*	Achieved*	Achieve
		Regulations A	dopted		1978		1978		2000	2000	2000	2000	20	00	1978
	suc	Certification	Good- Exhau Emiss	st						0	0	0			
Environmental Information	Exhaust Emissions	Level of Low Emission Vehicles	Excelle Low Exhau Emissi	st					O				()	
	Exh	10 • 15 Mode	cc)	2.10		2.10		0.67	0.67	0.67	0.67	0.	67	2.10
D		Regulation Figures	нс	;	0.25		0.25		0.04	0.06	0.06	0.06	0.	04	0.25
		(g/km)	NO	x	0.25		0.25		0.04	0.06	0.06	0.06	0.	04	0.25
ŭ	é	Regulations A	dopted		1998		1998			1998		1998		1998	
	Noise	Acceleration I lation Figures			76		76			76		76		76	
	Amo	unt of Refrigera	nt Used	(g)	530		500			500		550		500	
	Use d	of Recycled Mate	erials		Battery tray, engine under cover, radi- ator under cover		Battery tray, nder seat bo dash silence	х,		Battery tray, under seat bo dash silence		Battery tray		Battery tray, nk lower cove dash silencer	er,
		unt of Lead Used ompared to 199		ved	Achieved		Achieved			Achieved		Achieved		Achieved	

* This mark indicates that not all vehicles are in compliance.

< Passenger Cars >

		Vehicle Name	e			Escudo		Jimny Wide	Swift	Every Plus	Wagon	R Solio	Grand Escudo	Aerio						
Date S	Sa	les Began				2000.4.13		2000.4.13	2000.9.1	2000.11.15	2000.	11.29	2000.12.12	2001.1.23						
Ve	ehi	cle Type			LA-TA52W	LA-TL52W	LA-TD62W	TA-JB43W	GH-HT51S	GF-DA32W	LA-MA34S	LA-MA64S	LA-TX92W	LA-RB21S						
		Model			J2	0A	H25A	M13A	M13A	G13B	M13A	K10A	H27A	M15A						
	Ī	Displacement	(L)		1,9	995	2,493	1,328	1,328	1,298	1,328	996	2,736	1,490						
Engine		Туре				-Cylinder C 16V	V6 DOHC 24V	In-Line 4-Cyl- inder DOHC 16V VVT	In-Line 4-Cyl- inder DOHC 16V VVT	In-Line 4-Cyl- inder SOHC 16V	In-Line 4-Cyl- inder DOHC 16V VVT	In-Line 4-Cyl- inder DOHC 16V VVT	V6 DOHC 24V	In-Line 4-C inder DOH 16V VVT						
		Fuel Type							Unlea	aded Regular										
	Ī	Fuel System								EPi										
in		Drive System				4WD		4WD	2WD/4WD	2WD/4WD	2WD/4WD	2WD/4WD	4WD	2WD/4WI						
Drive Train	Ī	_		МТ	5-Speed	5-Speed	_	5-Speed	5-Speed	_	_	_	_	5-Speed						
Dri		Transmission		AT	4-Speed	4-Speed	4-Speed	4-Speed	4-Speed	4-Speed	4-Speed	4-Speed	4-Speed	4-Speed						
				мт	1,260	1,360	_	1,060	880-920	990	_	_	_	1130-120						
leigh	ht ((kg)		AT	1,280	1,380	1,400	1,060	910-960	1,030	960-1,000	920-960	1,620	1,150 -						
laxin	nu	m Load Capaci	ity (kg)	_	_	_	_	_	_	_	_	_	_						
Consumption		10 · 15 Mode Fue		10 · 15 Mode Fue		10 · 15 Mode Fuel		10 • 15 Mode Fuel		МТ	13.2	12.4	_	14.0	18.0-18.6	15.4	_	_	_	16.0-18.
		Economy (km/		AT	11.6	11.6	10.2	12.8	15.6-16.2	13.6	16.4-17.4	18.0-19.6								
Consur	Rate	CO2 Emission (10 · 15 Mode))	179-203	190-203	231	168-184	131-151	153-173	136-144	120-131	268	147-164						
Fuel	Ī	2010 Fuel Eco Standard Achi										Achieved		Achieved						
		Regulations A	dopte	d		2000	•	2000	2000	1978	20	00	2000	2000						
sions	2	Certification Level of Low	tions Adopted Good- Low Exhaust	aust			0													
Exhaust Emissions		Emission Vehicles	Exce lent- Exha Emis	Low		Ø					(٥	Ø	O						
μŭ	1	10 • 15 Mode	c	0		0.67		0.67	0.67	2.10	0.	67	0.67	0.67						
		Regulation Figures	н	C		0.04		0.06	0.08	0.25	0.	04	0.04	0.04						
		(g/km)	N	Ox		0.04		0.06	0.08	0.25	0.	04	0.04	0.04						
	,	Regulations A	dopte	d		1998		1998	1998	1998	19	98	1998	1998						
Noise		Acceleration N ulation Figures				76		76	76	76	7	6	76	76						
		unt of Refriger I (g)	ant			450		550	360	530	48	30	750	500						
Us	se	of Recycled Ma	aterial	s		Battery Tray		Battery Tray	Battery Tray, Under Seat Tray, Dash Silencer	Battery Tray, Under Seat Tray, Dash Silencer	Under S	ry Tray, ieat Tray, Silencer	Battery Tray	Foot Res Pedal, Batt Tray, Das Silence						
(A)		unt of Lead Us ieved 1/2 Comj)		to		Achieved		Achieved	Achieved	Achieved	Achi	eved	Achieved	Achieve						

* This mark indicates that not all vehicles are in compliance.

Vel	hicle	Name				Ev	ery		Ca	irry	Alto
Da	te Sa	ales Began				2000	.5.17		2000).5.17	2001.2.15
	Veh	icle Type			GD-D	A52V	GD-D	B52V	GD-DA52T	GD-DB52T	LE-HA23V
		Model				F	5A		F	6A	K6A
ions		Displacement	(L)			65	57		6	57	658
Specifications	Engine	Туре			In-Line 3 -Cylinder SOHC 12V	In-Line 3-Cylinder SOHC 6V Intercooler Turbo	In-Line 3-Cylinder SOHC 12V	In-Line 3-Cylinder SOHC 6V Intercooler Turbo	In-Line 3-Cylin	der SOHC 12V	In-Line 3-Cylinder DOHC 12V
		Fuel Type						Unleaded Regular			
		Fuel System						EPi			
	ain	Drive System			20	VD	4V	VD	2WD	4WD	2WD/4WD
	Drive Train	Transforder	1	лт	5MT	5MT	5MT	5MT	5MT	5MT	5MT
	Ē	Transmission		Т	3AT	4AT	ЗАТ	4AT	ЗАТ	3AT	3AT
			1	лт	820-850	880	870-900	930	690-700	740-750	630-680
We	eight	(kg)		ΑТ	830-860	900	890-910	950	700-710	750-760	640-690
Ма	ximu	ım Load Capac	ity			35	50		3	50	200
	u			лт	16.4-16.8	17.0	15.6	17.0	17.0	16.0	21.0-23.0
	Fuel Consumption Rate	Economy (km	~ F	Т	15.0	15.0	14.6	14.6	15.4-15.8	15.2	17.6-9.4
		CO ₂ Emission	ıs (g/km		140-144	140-159	151-162	140-164	139-149	139-155	103-134
		2010 Fuel Economy Standard Achieved			Achieved	Achieved	Achieved*	Achieved*	Achieved*		Achieved*
		Regulations A	dopted			19	98		19	998	2002
	sions	Certification Level of Low									
Environmental Information	Exhaust Emissions	Emission Vehicles	Excel- lent-Lo Exhau Emissi	st							
ental	Ĕ	10 • 15 Mode	со			6.	50		6.	50	3.30
Jume		Regulation Figures	нс			0.	25		0.	25	0.13
Nir		(g/km)	NOx			0.	25		0.	25	0.13
ш	e	Regulations A	dopted		1984	2000	1984	2000	19	984	1999
	Noise	Acceleration I ulation Figure			78	76	78	76	7	78	76
		ount of Refriger d (g)	rant			53	30		5	30	500
	Use	of Recycled Ma	aterials		Battery	/ Tray, Engine Under (Cover, Radiator Under	Cover	Engine Ur	ry Tray, nder Cover, Inder Cover	Battery Tray, Tank Lower Cover, Dash Silencer
		ount of Lead Us nieved 1/2 Com 6)				Achi	eved		Achi	ieved	Achieved

< Mini Truck (Mini Commercial Vehicle) >

* This mark indicates that not all vehicles are in compliance.

Motorcycles

< Motorcycles >

	Vehicle Name		ZZ	DR-Z400S	Grass Tracker	Sky Wave	Sky Wave 400	Inazuma	Address V100	Address 110
Date Sa	ales Began		2000.4.1	2000.4.1	2000.4.20	2000.6.22	2000.7.27	2000.11.22	2000.11.30	2000.12.20
	Vehicle Type		BB-CA1PB	BC-SK43A	BA-NJ47A	BA-CJ42A	BC-CK42A	BC-GK7BA	BD-CE11A	BD-CF11A
6	Engine Model		A155	K419	J424	J429	K415	K717	E111	F129
Specifications	Type		Forced Air- Cooled 2-Stroke	Water-Cooled 4-Stroke	Air Cooled 4-Stroke	Water-Cooled 4-Stroke	Water-Cooled 4-Stroke	Oil-Cooled 4-Stroke	Forced Air- Cooled 2-Stroke	Forced Air- Cooled 2-Stroke
cific	Displacement (cm3	3)	49	398	249	249	385	399	99	113
Spe	Transmission		Variable Ratio V-Belt	5-Speed Return	5-Speed Return	Variable Ratio V-Belt	Variable Ratio V-Belt	6-Speed with Return	Variable Ratio V-Belt	Variable Ratio V-Belt
	Weight (kg)		84	140	134	186	197	188	88	100
Fuel Con- sumption Rate	60km Constant Sp Test Value (km/l)	eed	_	40.0	54.5	39.0	35.0	36.5	43.0	41.0
Fuel sump Ra	30km Constant Sp Test Value (km/l)	eed	54.0	—	—	—	_	—	—	—
st ins	Regulations Adopt	ted	1998 Regulations	1999 Regulations	1998 Regulations	1998 Regulations	1999 Regulations	1999 Regulations	1999 Regulations	1999 Regulations
hau: ssio	Motorcycle Mode	со	8.00	13.0	13.0	13.0	13.0	13.0	8.00	8.00
Exhaust Emissions	Regulation Fig-	нс	3.00	2.00	2.00	2.00	2.00	2.00	3.00	3.00
_	ures (g/km)	NOx	0.10	0.30	0.30	0.30	0.30	0.30	0.10	0.10
Noise	Regulations Adopt	ted	1998 Regulations	1987 Regulations	1998 Regulations	1998 Regulations	1987 Regulations	1998 Regulations	1998 Regulations	1998 Regulations
Acceleration Noise Regu- lation Figures (dB(A))		71	75	73	73	75	73	71	71	
Other E	nvironmental Infor	mation	Recyclability (use r	naterials that are ea	asy to recycle, labeli	ng of resins, easy to	dismantle structure	es, etc.) Reduce and	d control the amount	t of lead used.

	Vehicle Name		GS1200SS	SV400S	Intruder Classic	GSX1400	Intruder Classic 800	Verde	Vecstar 125	Grass Tracker Bigboy
Date Sa	ales Began		2001.1.22	2001.1.24	2001.2.27	2001.2.28	2001.3.22	2001.3.22	2001.3.24	2001.3.30
	Vehicle Type		BC-GV78A	BC-VK53A	BC-VK54A	BC-GY71A	BC-VS54A	BB-CA1MB	BC-CF42A	BA-NJ47A
	Engine Model		V719	K508	K509	Y701	S509	A196	F418	J424
Specifications	Туре		Oil-Cooled 4-Stroke	Water-Cooled 4-Stroke	Water-Cooled 4-Stroke	Oil-Cooled 4-Stroke	Water-Cooled 4-Stroke	Forced Air- Cooled 2-Stroke	Forced Air- Cooled 4-Stroke	Air-Cooled 4-Stroke
cifi	Displacement (cm	3)	1,156	399	399	1,401	805	49	124	249
Spe	Transmission		5-Speed Return	6-Speed Return	5-Speed Return	6-Speed Return	5-Speed Return	Variable Ratio V-Belt	Variable Ratio V-Belt	5-Speed Return
	Weight (kg)		232	188	285	255	277	75	111	137
Fuel Con- sumption Rate	60km Constant Sp Test Value (km/l)	eed	28.0	37.0	36.0	28.0	35.0	_	54.0	54.5
Fuel sump Ra	30km Constant Sp Test Value (km/l)	eed	_	_	_	_	_	59.0	_	—
st ns	Regulations Adop	ted	1999 Regulations	1999 Regulations	1999 Regulations	1999 Regulations	1999 Regulations	1998 Regulations	1999 Regulations	1998 Regulations
ssio	Motorcycle Mode	со	13.0	13.0	13.0	13.0	13.0	8.00	13.0	13.0
Exhaust Emissions	Regulation Fig-	HC	2.00	2.00	2.00	2.00	2.00	3.00	2.00	2.00
_	ures (g/km)	NOx	0.30	0.30	0.30	0.30	0.30	0.10	0.30	0.30
Noise	Regulations Adop	ted	1987 Regulations	1998 Regulations	1987 Regulations	1987 Regulations	1987 Regulations	1998 Regulations	1986 Regulations	1998 Regulations
Ñ	Acceleration Noise lation Figures (dB		75	73	75	75	75	71	71	73
Other E	Environmental Infor	mation	Recyclability (use r	naterials that are ea	asy to recycle, labeli	ng of resins, easy to	dismantle structure	es, etc.) Reduce and	d control the amount	of lead used.

< Electric Assist Bicycles >

Vehicle Name		Love SNV24	Love SNV26		
Battery	Туре	Nickel Hydro	ogen Battery		
Dattery	Capacity	24V-2.8Ah			
Charging	Refresh Function	Yes			
System	Charging Time	Approximately 1.2-1.5 hours			
Approximate	On flat surfaces (low mode)	52km			
Operating Range with Assist	Normal conditions (low mode)	32km			
Operation	Normal conditions (high mode)	25km			

Marine and Power Products

Category		Outboar	d Motor	Snowmobile (Equipped with Suzuki Engines)
Date Sales Began		Decemb	June, 2000	
Model Nar	ne	DF90	DF115	600-C-EID
Туре		09001F	11501F	_
		4-St	roke	2-Stroke
F ara in a T ar		4-Cyl	inder	2-Cylinder
Engine Ty	pe	DO	HC	Variable Valve Timing
		Fuel In	jection	Fuel Injection
Displacem	nent (cm2)	1,9	50	599
Weight (kg	3)	191 (Tra		
	Compliance with 2006 EPA Marine Engine Exhaust Emissions Regulations	0	0	Not Applicable
	Compliance with 2008 CARB Marine Engine Exhaust Emissions Regulations	0	0	Not Applicable
Exhaust	Compliance with 2006 Japan Boat Manufacturer's Association Voluntary Engine Exhaust Emissions Regulations	0	0	Not Applicable
Emission	Compliance with 2007 EPA Snowmobile Exhaust Emissions Regulations Phase 1 (Proposed)	Not Applicable	Not Applicable	0
	CO(g/kW-hr)	_	_	95 *2
	HC(g/kW-hr)	_	—	203 *2
	NOx(g/kW-hr)	_	_	1.3 *2
	HC+NOx(g/kW-hr)	14.6 *1		_
Fuel Economy	Fuel Consumption Rate at Maximum Output (g/kW-hr)	331	335	396 *2
Noise	Operator Noise (weighted calculation dBA)	_	84.7 *2	_

 $^{\ast}1$ Data provided to the EPA, CARB, and Japan Boating Industry Association $^{\ast}2$ In-house data

< Motorized Wheelchair >

Model Na	Model Name		MC3000		ET-4C
Dettern	Туре	20HR-D-SUZ	EV35-12	SC38-12	SC24-12
Battery	Capacity	24V 7Ah	12V35Ah x 2	12V32Ah x 2	12V20Ah x 2
Charging System	Charge Time	4.5 hours	12 hours		12 hours
Approximate Operating Range		100% depletion 10 km	JIS Type 29km	JIS Type 26km	20km
Weight (w/o battery)		25kg	56kg		65kg
Inclination Tested To		6°	8	0	10°

Plant Site Environmental Data

- < Notations > ① Water Quality (Notations and Proper Names (Units))
 - pH: Hydrogen-ion concentration (none), BOD: Biochemical oxygen demand (mg/l),
 - SS: Concentration of suspended solids in water (mg/l). All other items are referred to as mg/l.
 - 2 Air Quality (Notations and Proper Names (Units))
 - NOx: Nitrogen Oxide (ppm), SOX: Sulfur Oxide (K value), Particulate (g/Nm³), Chlorine/Hydrogen chloride/Fluoride/Hydrogen Fluoride (mg/Nm³), Dioxin: ng-TEQ/Nm³
 - ③ The strictest regulations out of the Water Pollution Control Law, Air Pollution Control Law, Prefectural Ordinances, and Pollution Control Agreement are used.
 - (4) There is no SOx measurement for the facilities that utilize sulferless LPG for fuel.

Takatsuka Plant

[Location] 300 Takatsuka-cho Hamamatsu-city, Shizuoka Prefecture [Site Area (Building Area)] 205,000m2 (125,000m2) [Main Products] Motorcycle Engine Assembly, Machine Processing [Number of Employees] 8,070

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
pH	5.8 - 8.6	7.0 - 7.9	7.5
BOD	20	32.1 or less*	3.56
SS	30	2.8 - 12.4	6.5
Oil Content	5.0	0.1 - 3.5	0.719
Lead	0.1	0.00	0.00
Hexavalent Chromium	0.1	under 0.005	under 0.005
Nitrogen	60	9.1 - 140*	40
Phosphorus	8	0.6 or less	0.25

* Action taken and results achieved

< Air Pollution Data (Discharge) >

Substance	Facilities	Regulated Values	Results	Average
	Boiler (LPG)	150	14 - 74	46
NOx	Small Boiler	_	58 - 110	84
	Melting Furnace	_	under 5	under 5
SOx (K value)	Small Boiler	7.0	0.54 - 3.17	1.47
	Boiler (LPG)	-	under 0.01	under 0.01
Particulates	Small Boiler	-	under 0.01	under 0.01
	Melting Furnace	0.2	under 0.01	under 0.01
Chlorine	AL Melting Furnace	30	under 1	under 1
Hydrogen Chloride	AL Melting Furnace	80	under 5	under 5
Fluoride/Hydrogen Fluoride	AL Melting Furnace	3	under 0.2	under 0.2

Iwata Plant

[Main Products] [Number of Employees]

[Location]

2500 Iwai Iwata-city, Shizuoka Prefecture [Site Area (Building Area)] 298,000m2 (167,000m2) Complete Assembly of CARRY, EVERY, JIMNY, EXCEED 1,810

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	7.0 - 8.1	7.5
BOD	15	0.9 - 11.3	5.5
SS	30	0.5 - 5.7	2.4
Oil Content	3	2.43 or less	0.65
Cadmium	0.1	0.000	0.000
Lead	0.1	under 0.01	under 0.01
Hexavalent Chromium	0.5	under 0.005	under 0.005
Nitrogen	60	6.5 - 20.5	11.5
Phosphorus	8	0.34 - 6.8	2.23

< Air Pollution Data (Discharge) >

Substance	Facilities	Regulated Values	Results	Average
	Boiler	130	110	110
NOx	Small Boiler	_	85 - 120	96
Nox	Hot Water Boiler, etc.	150	48 - 93	69
SOx (K value)	Boiler	17.5	3.16	3.16
SOX (K Value)	Small Boiler	17.5	0.46 - 0.81	0.67
	Boiler	0.1	under 0.01	under 0.01
Particulates	Small Boiler	_	under 0.01	under 0.01
	Hot Water Boiler, etc.	0.1	under 0.01	under 0.01

Kosai Plant

[Location] 4520 Shirasuka Kosai-city, Shizuoka Prefecture [Site Area (Building Area)] 1,101,000m2 (363,000m2) [Main Products] Complete Assembly of ALTO, WAGON R, KEI, WAGON R SOLIO, MR WAGON, CHEVROLET CRUZE, SWIFT [Number of Employees] 2,600

< Air Pollution Data (Discharged) >

< Water Pollution Data (Discharge) > First Discharge (Plant #1, Plant #2)

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	7.1 - 8	7.4
BOD	15	1.8 - 9.6	4.7
SS	15	1.5 - 10	4.2
Oil Content	2	1.6 or less	0.3
Cadmium	0.1	ND	ND
Lead	0.1	under 0.01	under 0.01
Hexavalent Chromium	0.1	ND	ND
Nitrogen	12	2 - 10.7	5.9
Phosphorus	2	0.22 - 1.7	0.65

Second Discharge (KD Plant)

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	7 - 7.8	7.4
BOD	15	0.2 - 5.2	1.2
SS	15	6.8 or less	1.3
Oil Content	2	1.2 or less	0.2
Cadmium	0.1	ND	ND
Lead	0.1	under 0.01	under 0.01
Hexavalent Chromium	0.1	ND	ND
Nitrogen	12	1.2 - 6.4	3.4
Phosphorus	2	0.06 - 0.24	0.15

Substance	Facilities	Regulated Values	Results	Average
	Small Boiler	150	57 - 84	68
	Incinerator	200	80 - 120	108
	Gas Turbine 1	70	19 - 41	30
	Gas Turbine 2	70	12 - 31	26
NOx	Drying Oven	230	64 - 77	71
	Water Heater/ Cooler 1	150	38	38
	Water Heater/ Cooler 2	150	50 - 53	52
	Small Boiler	7	under 0.09	under 0.05
	Incinerator	7	0.11 - 0.86	0.52
SOx (K value)	Gas Turbine 1	7	under 0.18	under 0.18
	Gas Turbine 2	7	under 0.18	under 0.18
	Drying Oven	7	under 0.15	under 0.15
	Small Boiler	0.1	under 0.01	under 0.01
	Incinerator	0.3	under 0.01	under 0.01
	Gas Turbine 1	0.05	under 0.01	under 0.01
	Gas Turbine 2	0.05	under 0.01	under 0.01
Particulates	Drying Oven	0.2	under 0.01	under 0.01
	Water Heater/ Cooler 1	0.1	under 0.01	under 0.01
	Water Heater/ Cooler 2	0.1	under 0.01	under 0.01
Hydrogen Chloride	Incinerator	150	under 60	under 60
Dioxin	Incinerator	80	0.13	0.13

• Toyokawa Plant ·

[Site Area (Building Area)] 185,000m2 (70,000m2) [Main Products] Motorcycle Assembly, Outboard Motor Assembly, Knock Down Components [Number of Employees] 800

1-2 Utari Shiratori-cho Toyokawa-city, Aichi Prefecture

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	7.1 - 7.5	7.3
BOD	20	2.1 - 7.2	3.9
SS	20	1.2 - 6.6	2.9
Oil Content	5	0.2 - 1.6	1
Cadmium	0.1	ND	ND
Lead	0.1	0.01 or less	0
Hexavalent Chromium	0.5	ND	ND
Nitrogen	15	4.8 - 9.9	6.75
Phosphorus	2	0.23 - 1.94	0.87

< Air Pollution Data (Discharge) >

[Location]

Substance	Facilities	Regulated Values	Results	Average
NOx	Boiler	150	79 - 92	85
NOX	Oven	230	25	25
Particulates	Boiler	0.1	0.01	0.01
Farticulates	Oven	0.2	0.01	0.01

Osuka Plant

[Location]

[Site Area (Building Area)] 149,000m2 (47,000m2) [Main Products] [Number of Employees]

6333 Nishi Obuchi Osuka-cho Ogasa-gun, Shizuoka Prefecture Cast Parts Manufacturing 450

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	6.7 - 7.3	7.1
BOD	10	1.5 - 8.7	4.8
SS	10	1.0 - 5.8	2.9
Oil Content	2	1.4 or less	0.8
Cadmium	0.1	0	0
Lead	0.1	0	0
Hexavalent Chromium	0.5	under 0.005	under 0.005
Nitrogen	60	1.9 - 4.6	3.34
Phosphorus	8	0.11 - 0.38	0.25

< Air Pollution Data (Discharged) >

Substance	Facilities	Regulated Values	Results	Average
NOx	Gas Turbine	70	24 or less	11.7
Particulates	Casting Furnace	0.1	under 0.01	under 0.01
Faillouiales	Gas Turbine	0.05	under 0.01	under 0.01
Chlorine	Aluminum Melting Furnace	10	under 1	under 1
Chiofilie	Aluminum Heating Furnace	10	under 1	under 1
Hydrogen Chloride	Aluminum Melting Furnace	20	under 5	under 5
nydrogen Chlonde	Aluminum Heating Furnace	20	under 5	under 5
Fluoride/Hydrogen	Aluminum Melting Furnace	1	under 0.2	under 0.2
Fluoride	Aluminum Heating Furnace	1	0.3 or less	0.2

• Sagara Plant

[Main Products]

[Location]

[Number of Employees]

1111 Shirai Sagara-cho Haibara-gun, Shizuoka Prefecture [Site Area (Building Area)] 1,936,000m² (50,000m²) Automobile Engine Assembly, Casting and Machine Processing of Main Components for Engine 730

< Water Pollution Data (Discharge) >

Items	Regulated Values	Results	Average
рН	5.8 - 8.6	6.9 - 7.9	7.3
BOD	15	6.3 - 11.9	9.0
SS	30	12.0 or less	4.1
Oil Content	3	2.4 or less	1.1
Cadmium	0.05	0	0
Lead	0.05	0	0
Hexavalent Chromium	0.25	under 0.005	under 0.005
Nitrogen	60	0.4 - 66.4	11.4
Phosphorus	8	0.08 - 1.00	0.33

< Air Pollution Data (Discharged) >

Substance	Facilities	Regulated Values	Results	Average
NOx	Gas Turbine	70	11 - 24	18
NOA	Heat Treatment	180	31 - 47	39
Particulates	Gas Turbine	0.05	under 0.01	under 0.01
Failiculates	Heat Treatment	0.2	under 0.01	under 0.01
Chlorine	Aluminum Melting Furnace	10	under 1	under 1
Hydrogen Chloride	Aluminum Melting Furnace	20	under 5	under 5
Fluoride/Hydrogen Fluoride	Aluminum Melting Furnace	1	under 2	under 2

A History of Suzuki's Environmental Activities

Suzuki's Environmental Chronology

1970	March	Ten CARRY Van electric vehicles were used as the
		Osaka World's Fair Exhibition.
1971	July	The Environmental Protection Section is established within the Facilities Group of the Production Engineer- ing Department as a section dedicated to environmen- tal measures regarding production processes.
1977	April	Suzuki Group Safety, Hygiene and Pollution Issues Council is established.
1978	December	CARRY Van electric vehicle is developed.
1981	December	Symposium on Energy Conservation is held, spon- sored by the Machinery Industry Fostering and Promot- ing Foundation (the current Suzuki Foundation).
1989	August	The Environmental Protection Council is established to strengthen the corporate-wide commitment to environ- mental issues, including products.
1990	March	Freon collectors are installed at dealers nationwide. Collection and recycling of specified Freon used for car air conditioners begins.
1991	December	Use of specified Freon for foaming (urethane form for seats, etc.) is abolished.
	January	The listing of the types of resinous materials used is begun.
	oundary	The SCVT continuously variable transmission is devel- oped. (Mounted on a Cultus Convertible.)
1992	October	A natural gas powered scooter is developed.
1992	November	The Waste Countermeasure Group is established within the Production Engineering Department in order to reduce the volume of waste and to promote recy- cling.
	December	The Alto electric vehicle and Every electric vehicle are introduced.
	March	The "Environmental Protection Activities Plan" is estab- lished.
1993	May	The Environmental Protection Section and the Waste Countermeasure Group are unified to form the Envi- ronmental Industrial Waste Group.
	December	The replacement of car air conditioner refrigerant with a Freon substitute is complete.
	June	The collection and recycling of waste bumpers from distributors is begun.
1994	August	A facility is installed to recycle sludge contained in water discharge from the painting process, for reuse as asphalt sheet.
		Recycling of waste sand at a casting plant as cement material is begun.
1995	January	Waste incinerators are renewed and reduction in the volume of waste and use of discharged heat (steam) are expanded.
	August	Co-generation facilities are introduced at the Kosai Plant to promote the reduction of energy.
	April	The electric power-assist bicycle "LOVE" is introduced.
1996	May	The "Environmental Protection Action Plan (Follow Up Version)" is established
	December	Co-generation facilities are introduced at the Sagara Plant.
	March	A Wagon R mini vehicle which uses natural gas as fuel is developed.
1997 -	May	Greatly improved Alto electric vehicles and Every elec- tric vehicles are introduced.
	October	Four-stroke outboard motor receives the "Technical Innovation Award" the Chicago Boat Show.
	December	Manual for the Disassembly of Vehicles is prepared and distributed to dealers.

	Fobruary	Co-generation facilities are introduced at the Osuka Plant.
	February	An Initiative Voluntary Action Plan for the Recycling of Used Automobiles is established.
	April	Magyar Suzuki, a plant in Hungary, gains ISO14001 certification.
1998	July	The Kosai Plant gains ISO14001 certification.
1990		A mini vehicle equipped with a lean burn engine, the "LEV" is introduced.
	October	For the second time in two years, a four-stroke out- board motor receives the "Technical Innovation Award" at the Chicago Boat Show.
	December	Develop an environmentally friendly pipe bending pro- cess.
	March	A new catalyst for motorcycles is developed. (Mounted on the "LET's II" scooter)
		A turbocharged Alto, the "Alto Épo Turbo" is introduced.
	May	A highly fuel efficient Alto, utilizing an "Sc Lean Burn" and CVT is introduced.
	June	A Wagon R vehicle powered by natural gas (CNG) is introduced.
	August	A new model Every electric vehicle is introduced.
	September	The Osuka Plant and Sagara Plant gain ISO14001 cer- tification.
4000		An Alto equipped with the idling stop system is intro- duced.
1999	October	"Suzuki Pu-3 Commuter" receives special award for "The Best Concept Car" at the Tokyo Motor Show.
		Electric Assist bicycle "LOVE" series undergoes full model change.
		Maruti Udyog Ltd. in India gains ISO14001 certification.
	November	Environmentally friendly table top industrial washers, the "SUC-300H, 600H" are introduced that cleanse using ultra sonic waves in place of organic solvents.
		The "Every natural gas (CNG) powered bicycle" is introduced.
	December	Four-stroke outboard motors that deliver quiet opera- tion and low vibration, the "DF25" and "DF30" are intro- duced.
	January	Developed compact bumper crushing machine.
	February	Suzuki Motor Espana S.A. in Spain gains ISO14001 certification.
	June	Cami Automotive Inc. in Canada gains ISO14001 certification.
	July	Packaging for transport of Suzuki's three and four wheel, electric "Senior Car" receives the "Logistics Prize" at the 2000 Japan Packing Contest.
2000	October	Electric Assist bicycle "LOVE" series undergoes full model change.
	November	Packaging for transport of Suzuki's three and four wheel, electric "Senior Car" receives the "World Star" prize at the World Packaging Contest.
	December	Big four-stroke outboard motors that deliver quiet oper- ation and low vibration, the "DF90" and "DF115" are introduced.
		The Toyokawa Plant gains ISO14001 certification.
	January	Lead is eliminated from the painting process in domes- tic motor cycle and automobile plants.
	March	The installation of bumper crushing machines in Japan is expanded.
2001	April	The Environment Planning Department is established to take responsibility for environmental problems related to technology, products, manufacturing, distri- bution, etc.
		Replacing the Environmental Issues Council, the Envi- ronmental Committee is established to strengthen envi- ronmental efforts.

Company Overview

Global recognition of the **\$** trademark — with acceptance and reputation.

Starting business in 1909 as Suzuki Loom Works, the firm was incorporated in 1920. Since its foundation in Hamamatsu, Japan, SUZUKI has steadily grown and expanded.

During the post-W.W.II period, our motorized bike "Power free" which earned a good reputation was followed by our 125cc motorcycle "Colleda", and later by the pioneering "Suzulight" lightweight car that helped bring about Japan's automotive revolution. Each of these was epoch-making in their own right as they were developed and manufactured by optimizing the most advanced technologies of that period. Today, constantly going forward to meet changing lifestyles, the SUZUKI name is seen on a full range of motorcycles, automobiles, outboard motors and related products such as generators, multipurpose engines and motorized wheelchairs, and even prefabricated storage sheds and houses.

The **\$** trademark is recognized by people throughout the world as a brand of quality products that offer both reliability and originality. SUZUKI stands behind this global symbol with a sure determination to maintain this confidence in the future as well, never stopping in creating such advanced "value-packed products."

- ♦ Company Name: SUZUKI MOTOR CORPORATION
- Established: March, 1920
- Paid-up Capital: 119,629 million yen (end of March, 2001)
- Chairman & CEO: Osamu Suzuki
- President & COO: Masao Toda
- ◆ Employees: 14,460 (end of March, 2001)
- Net Sales: 1,600,300 million yen (Consolidated)
 1,294,700 million yen (Non-consolidated) (Fiscal 2000)
- ♦ Main Product Line: Automobiles, motorcycles, outboard motors, generators, multipurpose engines, electric vehicles, and homes.

Head Office/Plants/Branch Offices:

Hamamatsu, Shizuoka Pref.
Kosai, Shizuoka Pref.
Iwata, Shizuoka Pref.
Toyokawa, Aichi Pref.
Ogasa-gun, Shizuoka Pref.
Haibara-gun, Shizuoka Pref.
Minato, Tokyo
Yokohama, Kanagawa Pref.
Hamamatsu, Shizuoka Pref.

We welcome your opinions and comments.

Thank you for reading this 2001 Suzuki Environmental Report.

This report focused mainly on the results of environmental activities in regards to our automobile, motorcycle, and marine and power products business sectors.

Future environmental reports will be published on an annual basis. We'd like to know your opinions and comments to help us make these reports more complete.

So please take a moment to fill in the questionnaire on the reverse side of this page, and fax it to the Suzuki Environment Planning Department.

FAX : 81-53-440-2457 SUZUKI MOTOR CORPORATION Environment Planning Department

Questionnaire

ł	How did you come to • Newspaper article	 find out about Homepage 	• Dealer	• Other (١
			Dealei	• Other ()
	• Easy to understand	• Average	• Difficult to u	understand		
	Was there enough in	formation or da	ta in this repo	rt?		
		ttle too much	• Good	Not enough	 Too little 	
	What parts impresse • Introduction • Design and Developme • Design and Developme • Sales and Service • Environmental Data	ent (Automobiles)	• Envir • Desig r Products) • Manu • Mana	onmental Managemo gn and Development ufacturing and Purcha agement, General tory of Suzuki's Enviro	(Motorcycles) asing	Distribution Social Contribution
	On what topics woul	d vou like more	information in	the future?		
	Introduction			onmental Manageme	ent	
	Design and Developme		• Desig	gn and Development	(Motorcycles)	
	Design and Development	ent (Marine and Powe			asing	 Distribution
	 Sales and Service 		• Mana	agement, General		 Social Contributions
	Environmental Data		• A His		onmontal Activities	
	Environmental Data What other topics we	ould you like ad		tory of Suzuki's Enviro		
,	What other topics we How does this report	t compare with	ded in the futu	tory of Suzuki's Enviro	ecific.	
,	What other topics we How does this report	t compare with t	ded in the futu the report from • Same	tory of Suzuki's Environ Ire? Please be sp In last fiscal year? • A little worse	ecific.	
,	What other topics we How does this report • Much better • B	t compare with tetter	ded in the futu the report from • Same vironmental ac	tory of Suzuki's Environ Ire? Please be sp In last fiscal year? • A little worse tivities?	ecific. • Much wors	Se
,	What other topics we How does this report • Much better • B What is your opinion What would you like	t compare with tetter	ded in the futu the report from • Same vironmental ac	tory of Suzuki's Environ Ire? Please be sp In last fiscal year? • A little worse tivities?	ecific. • Much wors	Se
,	What other topics we How does this report • Much better • B What is your opinion What would you like	t compare with tetter	ded in the futu the report from • Same vironmental ac	tory of Suzuki's Environ Ire? Please be sp In last fiscal year? • A little worse tivities?	ecific. • Much wors	Se
,	What other topics we How does this report • Much better • B What is your opinion What would you like Please be specific.	t compare with t etter of Suzuki's env to see Suzuki d	ded in the futu the report from • Same vironmental ac	tory of Suzuki's Environ Ire? Please be sp n last fiscal year? • A little worse tivities? • environmental c	ecific. • Much wors	se the future?
,	What other topics we How does this report • Much better • B What is your opinion What would you like	t compare with t etter of Suzuki's env to see Suzuki d	ded in the futu the report from • Same vironmental ac	tory of Suzuki's Environ Ire? Please be sp n last fiscal year? • A little worse tivities? • environmental c	ecific. • Much wors	se the future?
7	What other topics we How does this report • Much better • B What is your opinion What would you like Please be specific.	t compare with t etter of Suzuki's env to see Suzuki d	ded in the futu the report from • Same vironmental ac	tory of Suzuki's Environ Ire? Please be sp n last fiscal year? • A little worse tivities? • environmental c	ecific. • Much wors	se the future?
,	What other topics we How does this report • Much better • B What is your opinion What would you like Please be specific.	t compare with t etter of Suzuki's env to see Suzuki d	ded in the futu the report from • Same vironmental ac	tory of Suzuki's Environ Ire? Please be sp n last fiscal year? • A little worse tivities? • environmental c	ecific. • Much wors	se the future?

Cut here

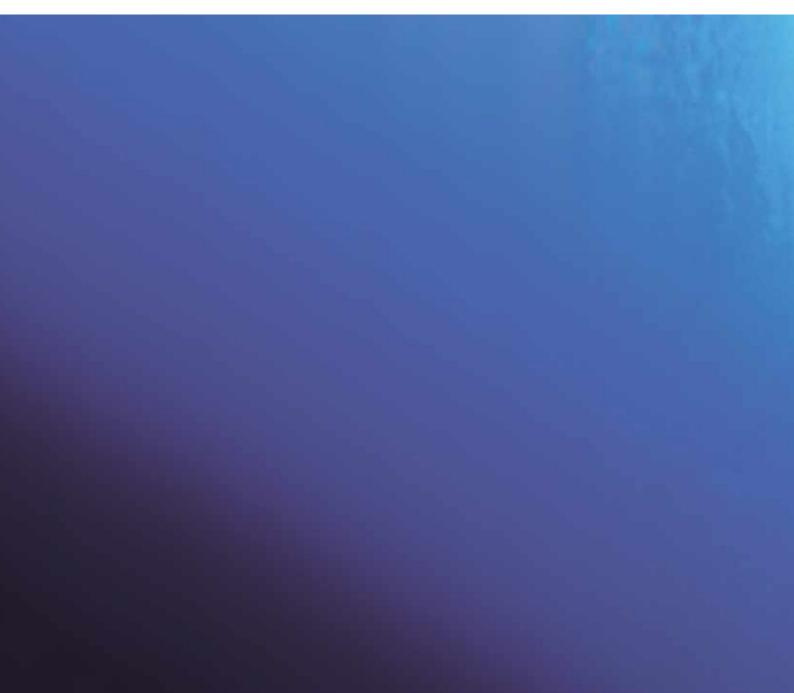
11 Thank you for your cooperation. Finally, we'd like to know a little about you. If you don't mind, please give some information about yourself.

Name :	Age :	Sex : Male / Female			
Address :					
Occupation/Company or Organization name :					
Department/Title :					

FAX : 81-53-440-2457 SUZUKI MOTOR CORPORATION Environment Planning Department

For all inquiries, please contact

SUZUKI MOTOR CORPORATION Environment Planning Department


300 TAKATSUKA, HAMAMATSU, JAPAN FAX : 81-53-440-2457

Published: March, 2002

This report is also available on our homepage. http://www.globalsuzuki.com/

SUZUKI MOTOR CORPORATION

300 TAKATSUKA, HAMAMATSU, JAPAN

